Hybrid problem of dynamic control with three participants in the presence of altruistic and aggressive behavior types
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 13 (2021) no. 4, pp. 18-41.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is close to [5] where a two-step hybrid dynamic control problem with three participants was considered; it was shown that in some cases it is profitable for the owner of management resources to sell a part of them to another participant(s) (assuming that the payoffs are transferable). This paper is also close to [4] where aggressive and altruistic types of behavior were allowed for the participants in three players differential game; then the players can apply the so-called $BT$-solutions which are better than the Nash ones. The developed in this paper approach is illustrated by a two-step control problem on a plane with the dynamics of simple motions in the presence of altruistic and aggressive behavior types.
Keywords: hybrid control problem, non-antagonistic differential game of two and three persons, altruistic and aggressive types of behavior, Nash solutions
Mots-clés : $BT$-solutions.
@article{MGTA_2021_13_4_a1,
     author = {Anatoly F. Kleimenov},
     title = {Hybrid problem of dynamic control with three participants in the presence of altruistic and aggressive behavior types},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {18--41},
     publisher = {mathdoc},
     volume = {13},
     number = {4},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2021_13_4_a1/}
}
TY  - JOUR
AU  - Anatoly F. Kleimenov
TI  - Hybrid problem of dynamic control with three participants in the presence of altruistic and aggressive behavior types
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2021
SP  - 18
EP  - 41
VL  - 13
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2021_13_4_a1/
LA  - ru
ID  - MGTA_2021_13_4_a1
ER  - 
%0 Journal Article
%A Anatoly F. Kleimenov
%T Hybrid problem of dynamic control with three participants in the presence of altruistic and aggressive behavior types
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2021
%P 18-41
%V 13
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2021_13_4_a1/
%G ru
%F MGTA_2021_13_4_a1
Anatoly F. Kleimenov. Hybrid problem of dynamic control with three participants in the presence of altruistic and aggressive behavior types. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 13 (2021) no. 4, pp. 18-41. http://geodesic.mathdoc.fr/item/MGTA_2021_13_4_a1/

[1] Kleimenov A. F., Neantagonisticheskie pozitsionnye differentsialnye igry, Nauka, Ekaterinburg, 1993

[2] Kleimenov A. F., “O resheniyakh v neantagonisticheskoi pozitsionnoi differentsialnoi igre”, Prikladnaya matematika i mekhanika, 61:5 (1997), 739–746 | Zbl

[3] Kleimenov A. F., “Altruisticheskoe povedenie v neantagonisticheskoi pozitsionnoi differentsialnoi igre”, Matematicheskaya teoriya igr i ee prilozheniya, 7:4 (2015), 40–55 | Zbl

[4] Kleimenov A. F., “Altruisticheskii i agressivnyi tipy povedeniya v neantagonisticheskoi pozitsionnoi differentsialnoi igre trekh lits”, Trudy In-ta matematiki i mekhaniki, 25, no. 3, 2019, 108–117

[5] Kleimenov A. F., “Prinyatie reshenii v odnoi gibridnoi zadache dinamicheskogo upravleniya s tremya uchastnikami”, Trudy In-ta matematiki i mekhaniki, 26, no. 1, 2020, 131–140

[6] Krasovskii N. N., Subbotin A. I., Pozitsionnye differentsialnye igry, Nauka, M., 1974

[7] Krasovskii N. N., Upravlenie dinamicheskoi sistemoi, Nauka, M., 1985

[8] Petrosyan L. A., Zenkevich N. A., Shevkoplyas E. V., Teoriya igr, BKhV-Peterburg, SPb, 2012

[9] Gromov D., Gromova E., “On a Class of Hybrid Differential Games”, Dynamic Games and Applications, 7:2 (2017), 266–288 | DOI | Zbl

[10] Kleimenov A. F., Kryazhimskii A. V., Normal Behavior, Altruism and Aggression in Cooperative Game Dynamics, Interim Report IR-98-076, IIASA, Laxenburg, 1998

[11] Kleimenov A. F., “An Approach to Building Dynamics for Repeated Bimatrix $2\times2$ Games Involving Various Behavior Types”, Dynamic and Control, ed. G. Leitman, Gordon and Breach, London, 1998, 195–204

[12] Kleimenov A., “Altruistic, Aggressive and Paradoxical Types of Behavior in a Non-Antagonistic Positional Differential Two-Person Game”, Frontiers of Dynamic Games, eds. L.A. Petrosyan, V.V. Mazalov, N.A. Zenkevich, Birkhauser, Basel, 2018, 25–37 | DOI | Zbl

[13] Kort P. M., Wrzaczek S., “Optimal firm growth under the threat of entry”, Eur. J. Oper. Res., 246:1 (2015), 281–292 | DOI | Zbl