Hierarchical games with additive payoff functions combining public and private interests
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 13 (2021) no. 4, pp. 3-17.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper proposes a game-theoretic model with linear-quadratic payoff functions, which are additive convolutions of two criteria describing public and personal interests. This game has good properties, in particular, the independence of the leader's strategy in the Stackelberg equilibrium from the parameters of the follower's function. This property means that the leader does not need information about the follower's objective function, which in reality is difficult to obtain, and his strategy has the property of robustness.
Keywords: hierarchical game, Stackelberg equilibrium, Nash equilibrium, public goods, linear-quadratic payoff function.
@article{MGTA_2021_13_4_a0,
     author = {Victor A. Gorelik and Tatiana V. Zolotova},
     title = {Hierarchical games with additive payoff functions combining public and private interests},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {3--17},
     publisher = {mathdoc},
     volume = {13},
     number = {4},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2021_13_4_a0/}
}
TY  - JOUR
AU  - Victor A. Gorelik
AU  - Tatiana V. Zolotova
TI  - Hierarchical games with additive payoff functions combining public and private interests
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2021
SP  - 3
EP  - 17
VL  - 13
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2021_13_4_a0/
LA  - ru
ID  - MGTA_2021_13_4_a0
ER  - 
%0 Journal Article
%A Victor A. Gorelik
%A Tatiana V. Zolotova
%T Hierarchical games with additive payoff functions combining public and private interests
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2021
%P 3-17
%V 13
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2021_13_4_a0/
%G ru
%F MGTA_2021_13_4_a0
Victor A. Gorelik; Tatiana V. Zolotova. Hierarchical games with additive payoff functions combining public and private interests. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 13 (2021) no. 4, pp. 3-17. http://geodesic.mathdoc.fr/item/MGTA_2021_13_4_a0/

[1] Burkov V. N., Osnovy matematicheskoi teorii aktivnykh sistem, Nauka, M., 1977

[2] Burkov V. N., Kondratev V. V., Mekhanizmy funktsionirovaniya organizatsionnykh sistem, Nauka, M., 1981

[3] Germeier Yu. B., Igry s neprotivopolozhnymi interesami, Nauka, M., 1976

[4] Gorelik V. A., Gorelov M. A., Kononenko A. F., Analiz konfliktnykh situatsii v sistemakh upravleniya, Radio i svyaz, M., 1991

[5] Gorelik V. A., Zolotova T. V., “Mekhanizmy upravleniya platezhami, limitami i shtrafami v ierarkhicheskikh regionalnykh modelyakh okhrany okruzhayuschei sredy”, Upravlenie bolshimi sistemami, 55 (2015), 119–139

[6] Moiseev N. N., Matematicheskie zadachi sistemnogo analiza, Nauka, M., 1981

[7] Novikov D. A., Teoriya upravleniya organizatsionnymi sistemami, MPSI, M., 2005

[8] Ugolnitskii G. A., Usov A. B., “Dinamicheskie modeli soglasovaniya chastnykh i obschestvennykh interesov pri ekonomicheskoi korruptsii”, Izvestiya Rossiiskoi akademii nauk. Teoriya i sistemy upravleniya, 2020, no. 1, 44–53 | Zbl

[9] Ugolnitskii G. A., Usov A. B., “Dinamicheskie modeli soglasovaniya chastnykh i obschestvennykh interesov pri prodvizhenii innovatsii”, Matematicheskaya teoriya igr i ee prilozheniya, 11:1 (2019), 96–114 | Zbl

[10] Baliga S., Maskin E., “Mechanism design for the environment”, Handbook of Environmental Economics, v. 1, Elsevier, Amsterdam, 2003, 305–324 | DOI

[11] Dixit A. K., Nalebuff B. J., The Art of Strategy: A Game Theorist's Guide to Success in Business and Life, W.W. Norton Company, New York, 2010

[12] Fehr E., Gachter S., “Cooperation and punishment in public goods experiments”, Amer. Econ. Rev., 90:4 (2000), 980–994 | DOI

[13] Gorelik V. A., Zolotova T. V., “Models of hierarchial control in ecolo-gical-economic systems”, Journal of Mathematical Sciences, 216:5 (2016), 612–626 | DOI | Zbl

[14] Hardin G., “The tragedy of the commons”, Science, 162:3859 (1968), 1243–1248 | DOI

[15] Hauert C., Holmes M., Doebeli M., “Evolutionary games and popu-lation dynamics: maintenance of cooperation in public goods games”, Proc. R. Soc. Lond. B Biol. Sci., 273:1600 (2006), 2565–2571

[16] Hart O., “Incomplete Contracts and Control”, American Economic Review, 107:7 (2017), 1731–1752 | DOI

[17] Hart O., Zingales L., “Liquidity and Inefficient Investment”, Journal of the European Economic Association, 13:5 (2015), 737–769 | DOI

[18] Holmstrom B., Milgrom P., “Multitask principal-agent analyses: Incentive contracts, asset ownership, and job design”, The Economic Nature of the Firm, Cambridge University Press, 2009, 232–244 | DOI

[19] Ostrom E., Governing the Commons, Cambridge University Press, Cambridge, 1990

[20] Sefton M., Shupp R., Walker J. M., “The effect of rewards and sanctions in provision of Public Good”, Econ. Inquiry, 45:4 (2007), 671–690 | DOI

[21] Stackelberg H. Von, Market Structure and Equilibrium, Springer, Berlin, 2011 | Zbl

[22] Stackleberg H. Von., The Theory of the Market Economy, William Hodge, London, 1952