Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MGTA_2021_13_3_a3, author = {Andrey V. Chernov}, title = {On some general scheme of constructing iterative methods for searching the {Nash} equilibrium in concave games}, journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a}, pages = {75--121}, publisher = {mathdoc}, volume = {13}, number = {3}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MGTA_2021_13_3_a3/} }
TY - JOUR AU - Andrey V. Chernov TI - On some general scheme of constructing iterative methods for searching the Nash equilibrium in concave games JO - Matematičeskaâ teoriâ igr i eë priloženiâ PY - 2021 SP - 75 EP - 121 VL - 13 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MGTA_2021_13_3_a3/ LA - ru ID - MGTA_2021_13_3_a3 ER -
%0 Journal Article %A Andrey V. Chernov %T On some general scheme of constructing iterative methods for searching the Nash equilibrium in concave games %J Matematičeskaâ teoriâ igr i eë priloženiâ %D 2021 %P 75-121 %V 13 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/MGTA_2021_13_3_a3/ %G ru %F MGTA_2021_13_3_a3
Andrey V. Chernov. On some general scheme of constructing iterative methods for searching the Nash equilibrium in concave games. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 13 (2021) no. 3, pp. 75-121. http://geodesic.mathdoc.fr/item/MGTA_2021_13_3_a3/
[1] M. Bazara, K. Shetti, Nelineinoe programmirovanie. Teoriya i algoritmy, Mir, M., 1982, 583 pp.
[2] V. V. Vasin, I. I. Eremin, Operatory i iteratsionnye protsessy feirovskogo tipa. Teoriya i prilozheniya, RKhD, M.–Izhevsk, 2005, 200 pp.
[3] A. A. Vasin, P. S. Krasnoschekov, V. V. Morozov, Issledovanie operatsii, ITs «Akademiya», M., 2008, 464 pp.
[4] A. A. Vasin, V. V. Morozov, Teoriya igr i modeli matematicheskoi ekonomiki, MAKS Press, M., 2005, 272 pp.
[5] N. N. Vorobev, Teoriya igr dlya ekonomistov-kibernetikov, Nauka, M., 1985, 272 pp.
[6] Yu. G. Evtushenko, Metody resheniya ekstremalnykh zadach i ikh primenenie v sistemakh optimizatsii, Nauka, M., 1982, 432 pp.
[7] Yu. G. Evtushenko, Optimizatsiya i bystroe avtomaticheskoe differentsirovanie, VTs im. A.A. Dorodnitsyna RAN, M., 2013, 144 pp.
[8] I. I. Eremin, V. D. Mazurov, Nestatsionarnye protsessy matematicheskogo programmirovaniya, Nauka, M., 1979, 288 pp.
[9] I. I. Eremin, S. V. Patsko, “Feierovskie protsessy dlya beskonechnykh sistem vypuklykh neravenstv”, Trudy IMM UrO RAN, 8, no. 1, 2002, 106–115
[10] I. I. Eremin, Feierovskie metody dlya zadach vypukloi i lineinoi optimizatsii, ITs YuUrGU, Chelyabinsk, 2009, 199 pp.
[11] I. I. Eremin, “Otobrazheniya szhatiya”, Trudy IMM UrO RAN, 15, no. 3, 2009, 106–115
[12] I. I. Eremin, L. D. Popov, “Feierovskie protsessy v teorii i praktike: obzor poslednikh rezultatov”, Izv. vuzov. Matematika, 2009, no. 1, 44–65 | Zbl
[13] L. V. Kantorovich, G. P. Akilov, Funktsionalnyi analiz, Nauka, M., 1984, 752 pp.
[14] V. V. Morozov, A. G. Sukharev, V. V. Fedorov, Issledovanie operatsii v zadachakh i uprazhneniyakh, Vysshaya shkola, M., 1986, 287 pp.
[15] N. N. Pisaruk, Vvedenie v teoriyu igr, BGU, Minsk, 2015, 256 pp.
[16] B. T. Polyak, Vvedenie v optimizatsiyu, Nauka, M., 1983, 384 pp.
[17] A. V. Chernov, “O suschestvovanii ravnovesiya po Neshu v differentsialnoi igre, svyazannoi s ellipticheskimi uravneniyami: monotonnyi sluchai”, Matem. teoriya igr i ee prilozheniya, 7:3 (2015), 48–78 | Zbl
[18] A. V. Chernov, “O nekotorykh podkhodakh k poisku ravnovesiya po Neshu v vognutykh igrakh”, Matem. teoriya igr i ee prilozheniya, 9:2 (2017), 62–104 | Zbl
[19] D. N. Chirkina, “Obzor metoda relaksatsii dlya poiska tochek ravnovesiya po Neshu v nepreryvnykh nekooperativnykh igrakh mnogikh lits”, Materialy XVI Mezhdunarodnoi molodezhnoi konf. «Naukoemkie tekhnologii i intellektualnye sistemy - 2014». Sektsiya 1: «Intellektualnye sistemy», MGTU im. N. E. Baumana, M., 2014, 37–40
[20] J. Contreras, J. B. Krawczyk, J. Zuccollo, “Playing Pollution Games with Thermal Electricity Generators”, Environmental Modeling and Assessment, 23:4 (2018), 639–651 | DOI
[21] F. Facchinei, C. Kanzow, “Generalized Nash equilibrium problems”, Ann. Oper. Res., 175 (2010), 177–211 | DOI | Zbl
[22] J. B. Krawczyk, S. Uryasev, “Relaxation Algorithms to Find Nash Equilibria with Economic Applications”, Environmental Modeling and Assessment, 2000, no. 5, 63–73 | DOI
[23] Lei Wang, Cui Liu, Hongwei Gao, Chong Lin, “Strongly strategic support of cooperative solutions for games over event trees”, Operations Research Letters, 48 (2020), 61–66 | DOI | Zbl
[24] A. B. MacKenzie, L. A. DaSilva, Game Theory for Wireless Engineers, Virginia Polytechnic Institute and State University: Morgan publishers, 2006, ix+76 pp.
[25] T. Meng, N. R. Schiff, P. B. Godfrey, M. Schapira, “PCC Proteus: Scavenger Transport And Beyond”, Annual conference of the ACM Special Interest Group on Data Communication on the applications, technologies, architectures, and protocols for computer communication (SIGCOMM-20) (August 10–14, 2020, Virtual Event, USA), ACM, New York, NY, USA, 615–631
[26] V. V. Vasin, I. I. Eremin, Operators and Iterative Processes of Fejér Type. Theory and Applications, Walter de Gruyter, Berlin–New York, 2009, xiv+155 pp.