>, the card game
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 13 (2021) no. 3, pp. 58-74.

Voir la notice de l'article provenant de la source Math-Net.Ru

Article describes new card game for 4 players, that requires from its participants decisions, made in presence of information asymmetry arising from secret component of players' every move. Significance for outcome of information asymmetry is demonstrated, and overview of potential lines of research in game analysis is given.
Keywords: card games, imperfect information, hierarchies of beliefs, correlated strategies.
@article{MGTA_2021_13_3_a2,
     author = {Maxim A. Savchenko},
     title = {<<Tesseract>>, the card game},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {58--74},
     publisher = {mathdoc},
     volume = {13},
     number = {3},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2021_13_3_a2/}
}
TY  - JOUR
AU  - Maxim A. Savchenko
TI  - >, the card game
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2021
SP  - 58
EP  - 74
VL  - 13
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2021_13_3_a2/
LA  - ru
ID  - MGTA_2021_13_3_a2
ER  - 
%0 Journal Article
%A Maxim A. Savchenko
%T >, the card game
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2021
%P 58-74
%V 13
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2021_13_3_a2/
%G ru
%F MGTA_2021_13_3_a2
Maxim A. Savchenko. <>, the card game. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 13 (2021) no. 3, pp. 58-74. http://geodesic.mathdoc.fr/item/MGTA_2021_13_3_a2/

[1] V. V. Mazalov, Matematicheskaya teoriya igr i prilozheniya, Izdatelstvo «Lan», SPb, 2016

[2] D. A. Novikov, A. G. Chkhartishvili, Refleksivnye igry, SINTEG, M., 2003

[3] M. A. Savchenko, “Normativnaya teoriya zagovorov”, MTIiP, 12:1 (2020), 33–59 | Zbl

[4] T. S. Ferguson, C. Ferguson, “On the Borel and von Neumann Poker Models”, Game Theory and Applications, 9 (2003), 17–32

[5] T. S. Ferguson, C. Ferguson, “The Endgame in Poker”, Optimal Play: Mathematical Studies of Games and Gambling, 2007, 79–106 | Zbl

[6] T. S. Ferguson, C. Ferguson, C. Gawargy, “$U(0,1)$ Two-Person Poker Models”, Game Theory and Applications, 12 (2007), 17–37

[7] J. F. Nash, L. S. Shapley, H. F. Bohnenblust, “A Simple Three-Person Poker Game”, Contributions to the Theory of Games, 1 (1950), 105–116

[8] J. von Neumann, “Zur Theorie der Gesellschaftsspiele”, Mathematische Annalen, 100 (1928), 295–320 | DOI | Zbl