Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MGTA_2021_13_3_a2, author = {Maxim A. Savchenko}, title = {<<Tesseract>>, the card game}, journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a}, pages = {58--74}, publisher = {mathdoc}, volume = {13}, number = {3}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MGTA_2021_13_3_a2/} }
Maxim A. Savchenko. <>, the card game. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 13 (2021) no. 3, pp. 58-74. http://geodesic.mathdoc.fr/item/MGTA_2021_13_3_a2/
[1] V. V. Mazalov, Matematicheskaya teoriya igr i prilozheniya, Izdatelstvo «Lan», SPb, 2016
[2] D. A. Novikov, A. G. Chkhartishvili, Refleksivnye igry, SINTEG, M., 2003
[3] M. A. Savchenko, “Normativnaya teoriya zagovorov”, MTIiP, 12:1 (2020), 33–59 | Zbl
[4] T. S. Ferguson, C. Ferguson, “On the Borel and von Neumann Poker Models”, Game Theory and Applications, 9 (2003), 17–32
[5] T. S. Ferguson, C. Ferguson, “The Endgame in Poker”, Optimal Play: Mathematical Studies of Games and Gambling, 2007, 79–106 | Zbl
[6] T. S. Ferguson, C. Ferguson, C. Gawargy, “$U(0,1)$ Two-Person Poker Models”, Game Theory and Applications, 12 (2007), 17–37
[7] J. F. Nash, L. S. Shapley, H. F. Bohnenblust, “A Simple Three-Person Poker Game”, Contributions to the Theory of Games, 1 (1950), 105–116
[8] J. von Neumann, “Zur Theorie der Gesellschaftsspiele”, Mathematische Annalen, 100 (1928), 295–320 | DOI | Zbl