Equilibria in a dynamic model of two firms coordination with non-fixed prices
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 13 (2021) no. 3, pp. 28-57.

Voir la notice de l'article provenant de la source Math-Net.Ru

Model of 2 companies' interaction is considered. Companies exchange two kinds of goods with each other. These goods also can be selled on the market. Prices of goods change over time. Interation is modelled by positional game which is similar to Rosental's Centipede game. Conditions for a contract beetween companies are found. For these conditions, companies can't violate a contract because it is unprofitable for them. Such conditions are modelled by Nash equilibriua in a positional game. We found that sufficient conditions for contract: it renews each 2 points of time; each company pays rather big fine if it refused to transfer good to another company.
Keywords: dynamic games, network games, supply chains, Nash equilibrium.
@article{MGTA_2021_13_3_a1,
     author = {Andrey P. Parfyonov},
     title = {Equilibria in a dynamic model of two firms coordination with non-fixed prices},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {28--57},
     publisher = {mathdoc},
     volume = {13},
     number = {3},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2021_13_3_a1/}
}
TY  - JOUR
AU  - Andrey P. Parfyonov
TI  - Equilibria in a dynamic model of two firms coordination with non-fixed prices
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2021
SP  - 28
EP  - 57
VL  - 13
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2021_13_3_a1/
LA  - ru
ID  - MGTA_2021_13_3_a1
ER  - 
%0 Journal Article
%A Andrey P. Parfyonov
%T Equilibria in a dynamic model of two firms coordination with non-fixed prices
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2021
%P 28-57
%V 13
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2021_13_3_a1/
%G ru
%F MGTA_2021_13_3_a1
Andrey P. Parfyonov. Equilibria in a dynamic model of two firms coordination with non-fixed prices. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 13 (2021) no. 3, pp. 28-57. http://geodesic.mathdoc.fr/item/MGTA_2021_13_3_a1/

[1] E. Mulen, Teoriya igr s primerami iz matematicheskoi ekonomiki, Mir, M., 1985

[2] A. P. Parfenov, “Algoritm nakhozhdeniya ravnovesii v dinamicheskoi setevoi igre”, Matematicheskaya teoriya igr i ee prilozheniya, 5:1 (2013), 45–60 | Zbl

[3] A. P. Parfenov, O. A. Malafeev, “Ravnovesnoe i kompromissnoe upravlenie v setevykh modelyakh mnogoagentnogo vzaimodeistviya”, Problemy mekhaniki i upravleniya: Nelineinye dinamicheskie sistemy, 39, 2007, 154–167

[4] A. P. Parfenov, “Ravnovesie v dinamicheskoi modeli koordinatsii dvukh firm”, Vestn. S. Peterburg. un-ta. Ser. 10: Prikladnaya matematika. Informatika. Protsessy upravleniya, 2021 (to appear) | Zbl

[5] L. A. Petrosyan, D. V. Kuzyutin, Igry v razvernutoi forme: optimalnost i ustoichivost, izdatelstvo SPbGU, SPb., 2002

[6] A. I. Semenenko, V. I. Sergeev, Logistika. Osnovy teorii, Soyuz, SPb, 2001

[7] R. J. Aumann, “On the Centipede Game”, Games and Economic Behavior, 23 (1998), 97–105 | DOI | Zbl

[8] G. Borstein, T. Kugler, A. Ziegelmeyer, Individual and group decisions in the centipede game : Are groups more “rational” players?, Journal of Experimental Social Psychology, 40:5 (2004), 599–605 | DOI

[9] M. O. Jackson, A. Wolinsky, “A Strategic Model of Social and Economics Networks”, J. Econom. Theory, 71 (1996), 44–74 | DOI | Zbl

[10] R. E. Kranton, D. F. Minehart, “A Theory of Buyer-Seller Networks”, Networks and Groups, Studies in Economic Design, eds. Dutta B., Jackson M.O., Springer, Berlin–Heidelberg, 2003

[11] R. Rosenthal, “Games of Perfect Information, Predatory Pricing, and the Chain Store”, Journal of Economic Theory, 1981, 92–100 | DOI | Zbl