Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MGTA_2021_13_3_a0, author = {Mikhail A. Gorelov}, title = {Hierarchical games with feedback on the assumption of a lower-level player's benevolence}, journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a}, pages = {3--27}, publisher = {mathdoc}, volume = {13}, number = {3}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MGTA_2021_13_3_a0/} }
TY - JOUR AU - Mikhail A. Gorelov TI - Hierarchical games with feedback on the assumption of a lower-level player's benevolence JO - Matematičeskaâ teoriâ igr i eë priloženiâ PY - 2021 SP - 3 EP - 27 VL - 13 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MGTA_2021_13_3_a0/ LA - ru ID - MGTA_2021_13_3_a0 ER -
Mikhail A. Gorelov. Hierarchical games with feedback on the assumption of a lower-level player's benevolence. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 13 (2021) no. 3, pp. 3-27. http://geodesic.mathdoc.fr/item/MGTA_2021_13_3_a0/
[1] V. N. Burkov, A. K. Enaleev, “Optimalnost printsipa otkrytogo upravleniya. Neobkhodimye i dostatochnye usloviya dostovernosti informatsii v aktivnykh sistemakh”, Avtomatika i telemekhanika, 1985, no. 3, 73–80 | Zbl
[2] A. A. Vasin, V. V. Morozov, Vvedenie v teoriyu igr s prilozheniyami k ekonomike, M., 2003
[3] I. A. Vatel, F. I. Ereshko, Matematika konflikta i sotrudnichestva, Znanie, M., 1973
[4] Yu. B. Germeier, “Ob igrakh dvukh lits s fiksirovannoi posledovatelnostyu khodov”, Dokl. AN SSSR, 198:5 (1971), 1001–1004 | Zbl
[5] Yu. B. Germeier, Vvedenie v teoriyu issledovaniya operatsii, Nauka, M., 1971
[6] Yu. B. Germeier, Igry s neprotivopolozhnymi interesami, Nauka, M., 1976
[7] V. A. Gorelik, A. F. Kononenko, Teoretiko-igrovye modeli prinyatiya reshenii v ekologo-ekonomicheskikh sistemakh, Radio i svyaz, M., 1982
[8] M. A. Gorelov, “Maksimalnyi garantirovannyi rezultat pri ogranichennom ob'eme peredavaemoi informatsii”, Avtomatika i telemekhanika, 2011, no. 3, 124–144 | Zbl
[9] M. A. Gorelov, “Maksimalnyi garantirovannyi rezultat v ierarkhicheskikh igrakh”, Upravlenie bolshimi sistemami, 67 (2017), 4–31
[10] A. F. Kononenko, “Rol informatsii o funktsii tseli protivnika v igrakh dvukh lits s fiksirovannoi posledovatelnostyu khodov”, Zh. vychisl. matem. i matem. fiz., 1973, no. 2, 311–317 | Zbl
[11] N. S. Kukushkin, V. V. Morozov, Teoriya neantagonisticheskikh igr, Izd-vo MGU, M., 1984
[12] E. Mulen, Teoriya igr s primerami iz matematicheskoi ekonomiki, Mir, M., 1985
[13] E. Tsermelo, “O primenenii teorii mnozhestv k teorii shakhmatnoi igry”, Matrichnye igry, Nauka, M., 1961, 167–172
[14] V. N. Burkov, A. Ya. Lerner, “Fairplay in Control of Active Systems”, Differential Games and Related Topics, North-Holland Publishing Company, Amsterdam–London, 1971, 164–168
[15] B. De Méziriac, Problèmes plaisants et délectables, qui se sont par les nombres, Lion, 1612
[16] M. Simaan, J. B. Cruz, “On the Stackelberg Strategy in Nonzero-Sum Games”, Journal of Optimization Theory and Applications, 11:5 (1973), 533–555 | DOI | Zbl
[17] H. Von Stackelberg, Market Structure and Equilibrium, 1st Edition Translation into English, Springer-Verlag, Berlin–Heidelberg, 2011 | Zbl