Hierarchical games with feedback on the assumption of a lower-level player's benevolence
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 13 (2021) no. 3, pp. 3-27.

Voir la notice de l'article provenant de la source Math-Net.Ru

A new optimality principle is proposed that generalizes the Stackelberg equilibrium principle. Its connection with the classical definition is investigated. The technique of working with the new definition is discussed. As an example, solutions are found in two hierarchical games with feedback.
Keywords: games with a fixed order of moves, Stackelberg equilibrium, benevolence.
Mots-clés : information
@article{MGTA_2021_13_3_a0,
     author = {Mikhail A. Gorelov},
     title = {Hierarchical games with feedback on the assumption of a lower-level player's benevolence},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {3--27},
     publisher = {mathdoc},
     volume = {13},
     number = {3},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2021_13_3_a0/}
}
TY  - JOUR
AU  - Mikhail A. Gorelov
TI  - Hierarchical games with feedback on the assumption of a lower-level player's benevolence
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2021
SP  - 3
EP  - 27
VL  - 13
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2021_13_3_a0/
LA  - ru
ID  - MGTA_2021_13_3_a0
ER  - 
%0 Journal Article
%A Mikhail A. Gorelov
%T Hierarchical games with feedback on the assumption of a lower-level player's benevolence
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2021
%P 3-27
%V 13
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2021_13_3_a0/
%G ru
%F MGTA_2021_13_3_a0
Mikhail A. Gorelov. Hierarchical games with feedback on the assumption of a lower-level player's benevolence. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 13 (2021) no. 3, pp. 3-27. http://geodesic.mathdoc.fr/item/MGTA_2021_13_3_a0/

[1] V. N. Burkov, A. K. Enaleev, “Optimalnost printsipa otkrytogo upravleniya. Neobkhodimye i dostatochnye usloviya dostovernosti informatsii v aktivnykh sistemakh”, Avtomatika i telemekhanika, 1985, no. 3, 73–80 | Zbl

[2] A. A. Vasin, V. V. Morozov, Vvedenie v teoriyu igr s prilozheniyami k ekonomike, M., 2003

[3] I. A. Vatel, F. I. Ereshko, Matematika konflikta i sotrudnichestva, Znanie, M., 1973

[4] Yu. B. Germeier, “Ob igrakh dvukh lits s fiksirovannoi posledovatelnostyu khodov”, Dokl. AN SSSR, 198:5 (1971), 1001–1004 | Zbl

[5] Yu. B. Germeier, Vvedenie v teoriyu issledovaniya operatsii, Nauka, M., 1971

[6] Yu. B. Germeier, Igry s neprotivopolozhnymi interesami, Nauka, M., 1976

[7] V. A. Gorelik, A. F. Kononenko, Teoretiko-igrovye modeli prinyatiya reshenii v ekologo-ekonomicheskikh sistemakh, Radio i svyaz, M., 1982

[8] M. A. Gorelov, “Maksimalnyi garantirovannyi rezultat pri ogranichennom ob'eme peredavaemoi informatsii”, Avtomatika i telemekhanika, 2011, no. 3, 124–144 | Zbl

[9] M. A. Gorelov, “Maksimalnyi garantirovannyi rezultat v ierarkhicheskikh igrakh”, Upravlenie bolshimi sistemami, 67 (2017), 4–31

[10] A. F. Kononenko, “Rol informatsii o funktsii tseli protivnika v igrakh dvukh lits s fiksirovannoi posledovatelnostyu khodov”, Zh. vychisl. matem. i matem. fiz., 1973, no. 2, 311–317 | Zbl

[11] N. S. Kukushkin, V. V. Morozov, Teoriya neantagonisticheskikh igr, Izd-vo MGU, M., 1984

[12] E. Mulen, Teoriya igr s primerami iz matematicheskoi ekonomiki, Mir, M., 1985

[13] E. Tsermelo, “O primenenii teorii mnozhestv k teorii shakhmatnoi igry”, Matrichnye igry, Nauka, M., 1961, 167–172

[14] V. N. Burkov, A. Ya. Lerner, “Fairplay in Control of Active Systems”, Differential Games and Related Topics, North-Holland Publishing Company, Amsterdam–London, 1971, 164–168

[15] B. De Méziriac, Problèmes plaisants et délectables, qui se sont par les nombres, Lion, 1612

[16] M. Simaan, J. B. Cruz, “On the Stackelberg Strategy in Nonzero-Sum Games”, Journal of Optimization Theory and Applications, 11:5 (1973), 533–555 | DOI | Zbl

[17] H. Von Stackelberg, Market Structure and Equilibrium, 1st Edition Translation into English, Springer-Verlag, Berlin–Heidelberg, 2011 | Zbl