Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MGTA_2021_13_2_a3, author = {Julia V. Chirkova}, title = {Machine {Load} {Balancing} {Game} with linear externalities}, journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a}, pages = {62--79}, publisher = {mathdoc}, volume = {13}, number = {2}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MGTA_2021_13_2_a3/} }
Julia V. Chirkova. Machine Load Balancing Game with linear externalities. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 13 (2021) no. 2, pp. 62-79. http://geodesic.mathdoc.fr/item/MGTA_2021_13_2_a3/
[1] Acemoglu D., Ozdaglar A., Flow control, routing, and performance from service provider viewpoint, LIDS report, 2004, 74 pp. | Zbl
[2] Andelman N., Feldman M., Mansour Y., “Strong price of anarchy”, Proc. of the 18th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), 2007, 189–198 | MR | Zbl
[3] Braess D., “Uber ein Paradoxon der Verkehrsplanung”, Unternehmensforschung, 12 (1968), 258–268 | MR | Zbl
[4] Easley D., Kleinberg J., Networks, Crowds, and Markets: Reasoning about Highly Connected World, Cambridge University Press, Cambridge, 2010 | MR | Zbl
[5] Epstein L., “Equilibria for two parallel links: the strong price of anarchy versus the price of anarchy”, Acta Informatica, 47:7–8 (2010), 375–389 | DOI | MR | Zbl
[6] Fotakis D., Kontogiannis S. C., Koutsoupias E., Mavronicolas M., Spirakis P. G., “The structure and complexity of nash equilibria for a selfish routing game”, Proc. of the 29th International Colloquium on Automata, Languages and Programming, ICALP 2002, 2002, 123–134 | MR | Zbl
[7] Gao H., Mazalov V. V., Xue J., “Optimal Parameters of Service in a Public Transportation Market with Pricing”, Journal of Advanced Transportation, 2020, Safety, Behavior, and Sustainability under the Mixed Traffic Flow Environment. 2020 (2020)
[8] Holzman R., Monderer D., “Strong equilibrium in network congestion games: Increasing versus decreasing costs”, International Journal of Game Theory, 44 (2015), 647–666 | DOI | MR | Zbl
[9] Jacobs J., The economy of cities, Random House, New York, 1969 | MR
[10] Koutsoupias E., Papadimitriou C. H., “Worst-case Equilibria”, Proc. of STACS, 1563, 1999, 404–413 | MR | Zbl
[11] Kuang Z., Lian Z., Lien J. W., Zheng J., “Serial and parallel duopoly competition in multi-segment transportation routes”, Transportation Research Part E: Logistics and Transportation Review, 133 (2020), 101821 | DOI
[12] Kuang Z., Mazalov V. V., Tang X., Zheng J., “Transportation network with externalities”, Journal of Computational and Applied Mathematics, 382 (2021), 113091 | DOI | MR | Zbl
[13] Lücking T., Mavronicolas M., Monien B., Rode M., Spirakis P., Vrto I., Which is the Worst-case Nash Equilibrium?, Proc. of the 26th International Symposium on Mathematical Foundations of Computer Science, LNCS, 2747, 2003, 551–561 | MR | Zbl
[14] Mak V., Seale D. A., Gishces E. J. et al., “The Braess Paradox and Coordination Failure in Directed Networks with Mixed Externalities”, Production and Operations Management, 27:4 (2018), 717–733 | DOI | MR
[15] Mazalov V., Chirkova J., Networking Games. Network Forming Games and Games on Networks, Academic Press, 2019 | Zbl
[16] Milchtaich I., “Network topology and the efficiency of equilibrium”, Games and Economic Behavior, 57:2 (2006), 321–346 | DOI | MR | Zbl
[17] Papadimitriou C. H., Koutsoupias E., “Worst-Case Equilibria”, LNSC, 1563, 1999, 404–413 | MR | Zbl
[18] Roughgarden T., Tardos É., How bad is selfish routing?, Journal of the ACM, 49:2 (2002), 236–259 | DOI | MR | Zbl