Transitional dynamics in network game with heterogeneous agents: stochastic case
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 13 (2021) no. 1, pp. 102-129.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, stochastic parameters are introduced into the network games model with production and knowledges externalities. This model was formulated by V. Matveenko and A. Korolev and generalized two-period Romer model. Agents' productivities have deterministic and Wiener components. The research represents the dynamics of a single agent and the dynamics in a triangle which occurs in the process of unifying agents. Explicit expressions of the dynamics of a single agent and dyad agents in the form of Brownian random processes were obtained. A qualitative analysis of the solutions of stochastic equations and systems was carried out.
Keywords: network games, differential games, Nash equilibrium, stochastic differential equations, Ito's Lemma, heterogeneous agents, productivity.
Mots-clés : Brounian motion
@article{MGTA_2021_13_1_a4,
     author = {Alexey V. Korolev},
     title = {Transitional dynamics in network game with heterogeneous agents: stochastic case},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {102--129},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2021_13_1_a4/}
}
TY  - JOUR
AU  - Alexey V. Korolev
TI  - Transitional dynamics in network game with heterogeneous agents: stochastic case
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2021
SP  - 102
EP  - 129
VL  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2021_13_1_a4/
LA  - ru
ID  - MGTA_2021_13_1_a4
ER  - 
%0 Journal Article
%A Alexey V. Korolev
%T Transitional dynamics in network game with heterogeneous agents: stochastic case
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2021
%P 102-129
%V 13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2021_13_1_a4/
%G ru
%F MGTA_2021_13_1_a4
Alexey V. Korolev. Transitional dynamics in network game with heterogeneous agents: stochastic case. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 13 (2021) no. 1, pp. 102-129. http://geodesic.mathdoc.fr/item/MGTA_2021_13_1_a4/

[1] A. N. Borodin, P. Salminen, Handbook of Brownian Motion. Facts and Formulae, Birkhauser Verlag, Basel–Boston–Berlin, 1996

[2] Y. Bramoulle, R. Kranton, “Public goods in networks”, Journal of Economic Theory, 135 (2007), 478–494

[3] A. Galeotti, S. Goyal, M. O. Jackson, F. Vega-Redondo, L. Yariv, “Network games”, Review of Economic Studies, 77 (2010), 218–244

[4] M. V. Garmash, X. A. Kaneva, “Game equilibria and adjustment dynamics in full networks and in triangle with heterogeneous agents”, Automation and Remote Control, 81:6 (2020), 1149–1165

[5] M. S. Granovetter, “The strength of weak ties”, American Journal of Sociology, 78 (1973), 1360–1380

[6] M. O. Jackson, Social, Economic Networks, Princeton University Press, 2008

[7] M. O. Jackson, Y. Zenou, “Games on networks”, Handbook of game theory, v. 4, eds. Young P., Zamir S., 2014, 95–163

[8] J. Lamperti, Stochastic processes, Springer-Verlag, 1977

[9] Y. P. Martemyanov, V. D. Matveenko, “On the dependence of the growth rate on the elasticity of substitution in a network”, International Journal of Process Management and Benchmarking, 4:4 (2014), 475–492

[10] V. D. Matveenko, A. V. Korolev, “Network game with production and knowledge externalities”, Contributions to Game Theory and Management, 8 (2015), 199–222

[11] V. Matveenko, A. Korolev, M. Zhdanova, “Game equilibria and unification dynamics in networks with heterogeneous agents”, International Journal of Engineering Business Management, 9 (2017), 1–17

[12] V. Matveenko, M. Garmash, A. Korolev, “Game Equilibria and Transition Dynamics in Networks with Heterogeneous Agents”, Frontiers of Dynamic Games, 10, eds. L. A. Petrosyan, V. V. Mazalov, N. A. Zenkevich, Birkhauser/Springer, 2018, 165–188

[13] P. M. Romer, “Increasing returns and long-run growth”, The Journal of Political Economy, 94 (1986), 1002–1037