Transitional dynamics in network game with heterogeneous agents: stochastic case
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 13 (2021) no. 1, pp. 102-129 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, stochastic parameters are introduced into the network games model with production and knowledges externalities. This model was formulated by V. Matveenko and A. Korolev and generalized two-period Romer model. Agents' productivities have deterministic and Wiener components. The research represents the dynamics of a single agent and the dynamics in a triangle which occurs in the process of unifying agents. Explicit expressions of the dynamics of a single agent and dyad agents in the form of Brownian random processes were obtained. A qualitative analysis of the solutions of stochastic equations and systems was carried out.
Keywords: network games, differential games, Nash equilibrium, stochastic differential equations, Ito's Lemma, heterogeneous agents, productivity.
Mots-clés : Brounian motion
@article{MGTA_2021_13_1_a4,
     author = {Alexey V. Korolev},
     title = {Transitional dynamics in network game with heterogeneous agents: stochastic case},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {102--129},
     year = {2021},
     volume = {13},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2021_13_1_a4/}
}
TY  - JOUR
AU  - Alexey V. Korolev
TI  - Transitional dynamics in network game with heterogeneous agents: stochastic case
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2021
SP  - 102
EP  - 129
VL  - 13
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/MGTA_2021_13_1_a4/
LA  - ru
ID  - MGTA_2021_13_1_a4
ER  - 
%0 Journal Article
%A Alexey V. Korolev
%T Transitional dynamics in network game with heterogeneous agents: stochastic case
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2021
%P 102-129
%V 13
%N 1
%U http://geodesic.mathdoc.fr/item/MGTA_2021_13_1_a4/
%G ru
%F MGTA_2021_13_1_a4
Alexey V. Korolev. Transitional dynamics in network game with heterogeneous agents: stochastic case. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 13 (2021) no. 1, pp. 102-129. http://geodesic.mathdoc.fr/item/MGTA_2021_13_1_a4/

[1] A. N. Borodin, P. Salminen, Handbook of Brownian Motion. Facts and Formulae, Birkhauser Verlag, Basel–Boston–Berlin, 1996

[2] Y. Bramoulle, R. Kranton, “Public goods in networks”, Journal of Economic Theory, 135 (2007), 478–494

[3] A. Galeotti, S. Goyal, M. O. Jackson, F. Vega-Redondo, L. Yariv, “Network games”, Review of Economic Studies, 77 (2010), 218–244

[4] M. V. Garmash, X. A. Kaneva, “Game equilibria and adjustment dynamics in full networks and in triangle with heterogeneous agents”, Automation and Remote Control, 81:6 (2020), 1149–1165

[5] M. S. Granovetter, “The strength of weak ties”, American Journal of Sociology, 78 (1973), 1360–1380

[6] M. O. Jackson, Social, Economic Networks, Princeton University Press, 2008

[7] M. O. Jackson, Y. Zenou, “Games on networks”, Handbook of game theory, v. 4, eds. Young P., Zamir S., 2014, 95–163

[8] J. Lamperti, Stochastic processes, Springer-Verlag, 1977

[9] Y. P. Martemyanov, V. D. Matveenko, “On the dependence of the growth rate on the elasticity of substitution in a network”, International Journal of Process Management and Benchmarking, 4:4 (2014), 475–492

[10] V. D. Matveenko, A. V. Korolev, “Network game with production and knowledge externalities”, Contributions to Game Theory and Management, 8 (2015), 199–222

[11] V. Matveenko, A. Korolev, M. Zhdanova, “Game equilibria and unification dynamics in networks with heterogeneous agents”, International Journal of Engineering Business Management, 9 (2017), 1–17

[12] V. Matveenko, M. Garmash, A. Korolev, “Game Equilibria and Transition Dynamics in Networks with Heterogeneous Agents”, Frontiers of Dynamic Games, 10, eds. L. A. Petrosyan, V. V. Mazalov, N. A. Zenkevich, Birkhauser/Springer, 2018, 165–188

[13] P. M. Romer, “Increasing returns and long-run growth”, The Journal of Political Economy, 94 (1986), 1002–1037