Dynamic SPICE-model of the regional development: a comparative analysis of the administrative and economic control mechanisms (on the example of South Federal District)
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 13 (2021) no. 1, pp. 59-88.

Voir la notice de l'article provenant de la source Math-Net.Ru

A game theoretic formalization of the mechanisms of control over the regions as parts of a macroregion with consideration of the requirements of sustainable development is proposed. A modified Solow model is used for the description of the regional state dynamics. developed. The model is identified on real data for the South Russian Federal District. A qualitative comparative analysis of efficiency of the administrative and economic control mechanisms is made.
Keywords: dynamic Stackelberg games, control mechanisms, Nash equilibrium, Stackelberg equilibrium, coordination of interests, regional management.
@article{MGTA_2021_13_1_a2,
     author = {Olga I. Gorbaneva and Anton D. Murzin and Gennady A. Ougolnitsky},
     title = {Dynamic {SPICE-model} of the regional development: a comparative analysis of the administrative and economic control mechanisms (on the example of {South} {Federal} {District)}},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {59--88},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2021_13_1_a2/}
}
TY  - JOUR
AU  - Olga I. Gorbaneva
AU  - Anton D. Murzin
AU  - Gennady A. Ougolnitsky
TI  - Dynamic SPICE-model of the regional development: a comparative analysis of the administrative and economic control mechanisms (on the example of South Federal District)
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2021
SP  - 59
EP  - 88
VL  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2021_13_1_a2/
LA  - ru
ID  - MGTA_2021_13_1_a2
ER  - 
%0 Journal Article
%A Olga I. Gorbaneva
%A Anton D. Murzin
%A Gennady A. Ougolnitsky
%T Dynamic SPICE-model of the regional development: a comparative analysis of the administrative and economic control mechanisms (on the example of South Federal District)
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2021
%P 59-88
%V 13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2021_13_1_a2/
%G ru
%F MGTA_2021_13_1_a2
Olga I. Gorbaneva; Anton D. Murzin; Gennady A. Ougolnitsky. Dynamic SPICE-model of the regional development: a comparative analysis of the administrative and economic control mechanisms (on the example of South Federal District). Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 13 (2021) no. 1, pp. 59-88. http://geodesic.mathdoc.fr/item/MGTA_2021_13_1_a2/

[1] I. N. Bulgakova, Yu. V. Vertakova, “Ispolzovanie teorii igr pri upravlenii territorialnym razvitiem (na primere otsenki effektivnosti integrirovannykh struktur)”, Izvestiya SPbGEU, 2017, no. 2 (104)

[2] N. A. Zenkevich, N. V. Kozlovskaya, “Ustoichivyi vektor Shepli v kooperativnoi zadache territorialnogo ekologicheskogo proizvodstva”, MTIP, 2:1 (2010), 67–92

[3] S. M. Lavlinskii, A. A. Panin, A. V. Plyasunov, “Modeli Shtakelberga v territorialnom upravlenii”, AiT, 2 (2019), 111–124

[4] V. Angeon, S. Lardon, “Participation and governance in territorial development projects: the 'territory game' as a local project leadership system”, International J. of Sustainable Development, 11:2/3/4 (2008)

[5] T. Y. Anopchenko, O. I. Gorbaneva, E. I. Lazareva, A. D. Murzin, G. A. Ougolnitsky, “Advanced Solow model as a tool for coordination of interests of spatial economic systems' development (On the materials of the South Russian macro-region)”, Advances in Systems Science and Applications, 19:4 (2019), 1–13

[6] T. Y. Anopchenko, O. I. Gorbaneva, E. I. Lazareva, A. D. Murzin, G. A. Ougolnitsky, E. V. Roshchina, “Dynamic Model of Macroregion Subjects' Interests Coordination”, Proceedings 2019 1st Int. Conference on Control Systems, Mathematical Modelling, Automation and Energy Efficiency, SUMMA 2019, 141–146

[7] M. Israel, J. R. Lund, G. T. Orlob, “Cooperative game theory in water resources”, Proc. of the 21st Ann. Conf. on Water Policy, 1994, 569–572

[8] F. Ji, “Multi-Region Negotiation Game for Water Resource Management of River Basin”, 2008 4th Intern. Conference on Wireless Communications, Networking and Mobile Computing (Dalian, 2008), 1–4

[9] L. Petrosyan, G. Zaccour, “Time-consistent Shapley value allocation of pollution cost reduction”, Journal of Economic Dynamics and Control, 27:3 (2003), 381–398

[10] R. M. Solow, “A Contribution to the Theory of Economic Growth”, The Quarterly Journal of Economics, 7:1 (1956), 65–94

[11] R. L. Teasley, D. C. McKinney, “Evaluating water resource management in the transboundary Rio Grande/Bravo using cooperative game theory”, Proceedings of the World Environmental and Water Resources Congress, World Environmental and Water Resources Congress 2010: Challenges of Change, 2010, 2194–2203

[12] M. Zhang, H. Li, L. Xue, W. Wang, “Using three-sided dynamic game model to study regional cooperative governance of haze pollution in China from a government heterogeneity perspective”, Science of the Total Environment, 694 (2019), 133559