Nonadditive integration and some solutions of cooperative games
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 13 (2021) no. 1, pp. 5-27.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper, we propose three schemes of nonadditive integration based on several extensions of nonadditive set function and integrand to the appropriate symmetric power of the original measurable space. A survey on the integral representation of some classic objects of the cooperative game theory, derived by nonadditive integration, is given. A universal approach for investigation of both finite and infinite games is developed. We pay a particular attention to the Shapley value, Owen multilinear extension, and support function of the core of a convex cooperative game.
Keywords: nonadditive integration, polynomial cooperative game, Shapley functional, generalized Owen extension, support function of the core.
@article{MGTA_2021_13_1_a0,
     author = {Valery A. Vasil'ev},
     title = {Nonadditive integration and some solutions of cooperative games},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {5--27},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2021_13_1_a0/}
}
TY  - JOUR
AU  - Valery A. Vasil'ev
TI  - Nonadditive integration and some solutions of cooperative games
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2021
SP  - 5
EP  - 27
VL  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2021_13_1_a0/
LA  - ru
ID  - MGTA_2021_13_1_a0
ER  - 
%0 Journal Article
%A Valery A. Vasil'ev
%T Nonadditive integration and some solutions of cooperative games
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2021
%P 5-27
%V 13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2021_13_1_a0/
%G ru
%F MGTA_2021_13_1_a0
Valery A. Vasil'ev. Nonadditive integration and some solutions of cooperative games. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 13 (2021) no. 1, pp. 5-27. http://geodesic.mathdoc.fr/item/MGTA_2021_13_1_a0/

[1] R. Auman, L. Shepli, Znacheniya dlya neatomicheskikh igr, Mir, M., 1977

[2] O. N. Bondareva, “Teoriya yadra dlya igry n lits”, Vestnik LGU, ser. mat., mekh., astron., 1962, no. 13(3), 141–142

[3] V. A. Vasilev, “Obschaya kharakteristika polinomialnykh funktsii mnozhestva”, Optimizatsiya, 1974, no. 14(31), 101–123

[4] V. A. Vasilev, “Ob odnom prostranstve neadditivnykh funktsii mnozhestva”, Optimizatsiya, 1975, no. 16(33), 99–120

[5] V. A. Vasilev, “Vektor Shepli dlya igr ogranichennoi polinomialnoi variatsii”, Optimizatsiya, 1975, no. 17(34), 5–26

[6] V. A. Vasilev, “Opornaya funktsiya yadra vypukloi kooperativnoi igry”, Optimizatsiya, 1978, no. 21(38), 30–35

[7] V. A. Vasilev, “Ob odnoi aksiomatizatsii obobschennogo rasshireniya Ouena”, Matematicheskie teoriya igr i ee prilozheniya, 1:2 (2009), 3–13

[8] V. A. Vasilev, M. G. Zuev, “Opornaya funktsiya yadra vypukloi igry”, Optimizatsiya, 1988, no. 44(61), 155–160

[9] B. Z. Vulikh, Vvedenie v teoriyu poluuporyadochennykh prostranstv, Fizmatgiz, M., 1961

[10] L. V. Kantorovich, G. P. Akilov, Funktsionalnyi analiz, Nauka, M., 1977

[11] I. Rozenmyuller, Kooperativnye igry i rynki, Mir, M., 1974

[12] E. Khille, R. Fillips, Funktsionalnyi analiz i polugruppy, IL, M., 1962

[13] Kh. Shefer, Topologicheskie vektornye prostranstva, Mir, M., 1971

[14] C. D. Aliprantis, K. C. Border, Infinite Dimensional Analysis, Springer-Ferlag, Berlin, 1994

[15] M. Marinacci, L. Montrucchio, “Stable cores of large games”, International Journal of Game Theory, 33:2 (2005), 189–213

[16] G. Owen, “Multilinear extensions of games”, Journal of Management Sciences, 18:5 (1972), 64–79

[17] V. A. Vasil'ev, “The Shapley functional and the polar form of homogeneous polynomial games”, Siberian Advances in Mathematics, 8:4 (1998), 109–150

[18] V. A. Vasil'ev, “Polar forms, p-values, and the core”, Approximation, Optimization and Mathematical Economics, ed. Lassonde M., Physica-Verlag, Heidelberg-New York, 2001, 357–368

[19] V. A. Vasil'ev, “Cores and generalized NM-solutions for some classes of cooperative games”, Russian Contributions to Game Theory and Equilibrium Theory, eds. T.G. Driessen, G. van der Laan, V. Vasil'ev, E. Yanovskaya, Springer-Verlag, Berlin–Heidelberg–New York, 2006, 91–149

[20] V. A. Vasil'ev, “Weber polyhedron and weighted Shapley values”, International Game Theory Review, 9:1 (2007), 139–150

[21] V. A. Vasil'ev, “Polar representation of Shapley value: nonatomic polynomial games”, Contributions to game theory and management, VI (2013), 434–446