Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MGTA_2020_12_4_a4, author = {Ping Sun and Elena M. Parilina}, title = {Stochastic model of network formation with asymmetric players}, journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a}, pages = {62--92}, publisher = {mathdoc}, volume = {12}, number = {4}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MGTA_2020_12_4_a4/} }
TY - JOUR AU - Ping Sun AU - Elena M. Parilina TI - Stochastic model of network formation with asymmetric players JO - Matematičeskaâ teoriâ igr i eë priloženiâ PY - 2020 SP - 62 EP - 92 VL - 12 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MGTA_2020_12_4_a4/ LA - ru ID - MGTA_2020_12_4_a4 ER -
Ping Sun; Elena M. Parilina. Stochastic model of network formation with asymmetric players. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 12 (2020) no. 4, pp. 62-92. http://geodesic.mathdoc.fr/item/MGTA_2020_12_4_a4/
[1] Gromova E. V., Petrosyan L. A., “On an approach to constructing a characteristic function in cooperative differential games”, Automation and Remote Control, 78:9 (2017), 1680–1692 | DOI | MR | Zbl
[2] V. V. Mazalov, Yu. V. Chirkova, Setevye igry, Lan, 2018
[3] L. A. Petrosyan, “Ustoichivost reshenii v differentsialnykh igrakh so mnogimi uchastnikami”, Vestnik Leningradskogo universiteta. Seriya 1: matematika, mekhanika, astronomiya, 1977, no. 19, 46–52 | Zbl
[4] L. A. Petrosyan, N. N. Danilov, “Ustoichivost reshenii neantagonisticheskikh differentsialnykh igr s transferabelnymi vyigryshami”, Vestnik Leningradskogo universiteta. Seriya 1: Matematika, mekhanika, astronomiya, 1979, no. 1, 52–59 | Zbl
[5] L. A. Petrosyan, A. Sedakov A, “Multistage network games with perfect information”, Automation and Remote Control, 75:8 (2014), 1532–1540 | DOI | MR | Zbl
[6] L. A. Petrosyan, A. A. Sedakov, A. O. Bochkarev, “Two-stage network games”, Automation and Remote Control, 77:10 (2016), 1855–1866 | DOI | MR
[7] R. J. Aumann, R. B. Myerson, “Endogenous formation of links between players and of coalitions: an application of the Shapley value”, The Shapley value, 1988, 175–191 | DOI | MR
[8] R. J. Aumann, B. Peleg, “Von Neumann-Morgenstern solutions to cooperative games without side payments”, Bulletin of the American Mathematical Society, 66:3 (1960), 173–179 | DOI | MR | Zbl
[9] K. E. Avrachenkov, A. Y. Kondratev, V. V. Mazalov, D. G. Rubanov, “Network partitioning algorithms as cooperative games”, Computational Social Networks, 5:1 (2018), 11 | DOI
[10] V. Bala, S. Goyal, “A noncooperative model of network formation”, Econometrica, 68:5 (2000), 1181–1229 | DOI | MR | Zbl
[11] P. Chander, H. Tulkens, “The core of an economy with multilateral environmental externalities”, Public goods, environmental externalities and fiscal competition, Springer, Boston, MA, 2006, 153–175 | DOI | MR
[12] T. S. H. Driessen, Y. Funaki, “Coincidence of and collinearity between game theoretic solutions”, OR Spektrum, 13 (1991), 15–30 | DOI | MR | Zbl
[13] H. Gao, L. Petrosyan, H. Qiao, A. Sedakov, “Cooperation in twostage games on undirected networks”, Journal of Systems Science and Complexity, 30:3 (2017), 680–693 | DOI | MR | Zbl
[14] H. Gao, L. Petrosyan, A. Sedakov, “Dynamic Shapley value for repeated network games with shock”, The 27th Chinese Control and Decision Conference (2015 CCDC), 2015, 6449–6455
[15] E. V. Gromova, T. M. Plekhanova, “On the regularization of a cooperative solution in a multistage game with random time horizon”, Discrete Applied Mathematics, 255 (2019), 40–55 | DOI | MR | Zbl
[16] A. Haurie, G. Zaccour, “Differential game model of power exchange between interconnected utilities”, Proceedings of the IEEE Conference on Decision and Control, 1986, 262–266
[17] M. O. Jackson, A. Watts, “On the formation of interaction networks in social coordination games”, Games and Economic Behavior, 41:2 (2002), 265–291 | DOI | MR | Zbl
[18] M. D. König, C. J. Tessone, Y. Zenou, “Nestedness in networks: A theoretical model and some applications”, Theoretical Economics, 9:3 (2014), 695–752 | DOI | MR | Zbl
[19] D. Kuzyutin, E. Gromova, N. Smirnova, “On the Cooperative Behavior in Multistage Multicriteria Game with Chance Moves”, Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 12095, 2020, 184–199 | Zbl
[20] J. Von Neumann, O. Morgenstern, Theory of games and economic behavior, Princeton University Press, Princeton, N J, 1947 | MR | Zbl
[21] E. Parilina, Solutions of cooperative stochastic games with transferable payoffs, Doctor Thesis, 2018
[22] E. M. Parilina, “A survey on cooperative stochastic games with finite and infinite duration”, Contributions to Game Theory and Management, 11 (2018), 129–195 | MR
[23] E. Parilina, L. Petrosyan, “On a Simplified Method of Defining Characteristic Function in Stochastic Games”, Mathematics, 8:7 (2020), 1135 | DOI
[24] E. M. Parilina, A. Tampieri, “Stability and cooperative solution in stochastic games”, Theory and Decision, 84:4 (2018), 601–625 | DOI | MR | Zbl
[25] E. M. Parilina, G. Zaccour, “Node-Consistent Shapley Value for Games Played over Event Trees with Random Terminal Time”, J. Optim. Theory Appl., 175 (2017), 236–254 | DOI | MR | Zbl
[26] L. Petrosyan, G. Zaccour, “Time-consistent Shapley value allocation of pollution cost reduction”, Journal of Economic Dynamics and Control, 27:3 (2003), 381–398 | DOI | MR
[27] P. Pin, B. Rogers, “Stochastic network formation and homophily”, Forthcoming in Oxford Handbook on the Economics of Networks, 2015
[28] P. V. Reddy, G. Zaccour, “A friendly computable characteristic function”, Mathematical Social Sciences, 82 (2016), 18–25 | DOI | MR | Zbl
[29] L. S. Shapley, “Stochastic games”, Proceedings of the national academy of sciences, 39:10 (1953), 1095–1100 | DOI | MR | Zbl
[30] P. Sun, E. Parilina, “Two-stage network formation game with heterogeneous players and private information”, Contributions to Game Theory and Management, XII (2019), 316–324 | MR