A guaranteed deterministic approach to superhedging: most unfavorable scenarios of market behaviour and moment problem
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 12 (2020) no. 3, pp. 50-88.

Voir la notice de l'article provenant de la source Math-Net.Ru

A guaranteed deterministic problem setting of super-replication with discrete time is considered: the aim of hedging of a contingent claim is to ensure the coverage of possible payout under the option contract for all admissible scenarios. These scenarios are given by means of a priori given compacts, that depend on the prehistory of prices: the increments of the price at each moment of time must lie in the corresponding compacts. The absence of transaction costs is assumed. The game-theoretical interpretation implies that the corresponding Bellman-Isaac equations hold, both for pure and mixed strategies. In the present paper, we propose a two-step method of solving the Bellman equation arising in the case of (game) equilibrium. In particular, the most unfavorable strategies of the “market” can be found in the class of the distributions concentrated at most in $n+1$ point, where $n$ is the number of risky assets.
Keywords: guaranteed estimates, deterministic price dynamics, super-replication, absence of arbitrage opportunities, Bellman-Isaacs equations, mixed strategies, game equilibrium, no trading constraints, risk-neutral measures.
Mots-clés : option, arbitrage
@article{MGTA_2020_12_3_a2,
     author = {Sergey N. Smirnov},
     title = {A guaranteed deterministic approach to superhedging: most unfavorable scenarios of market behaviour and moment problem},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {50--88},
     publisher = {mathdoc},
     volume = {12},
     number = {3},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2020_12_3_a2/}
}
TY  - JOUR
AU  - Sergey N. Smirnov
TI  - A guaranteed deterministic approach to superhedging: most unfavorable scenarios of market behaviour and moment problem
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2020
SP  - 50
EP  - 88
VL  - 12
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2020_12_3_a2/
LA  - ru
ID  - MGTA_2020_12_3_a2
ER  - 
%0 Journal Article
%A Sergey N. Smirnov
%T A guaranteed deterministic approach to superhedging: most unfavorable scenarios of market behaviour and moment problem
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2020
%P 50-88
%V 12
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2020_12_3_a2/
%G ru
%F MGTA_2020_12_3_a2
Sergey N. Smirnov. A guaranteed deterministic approach to superhedging: most unfavorable scenarios of market behaviour and moment problem. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 12 (2020) no. 3, pp. 50-88. http://geodesic.mathdoc.fr/item/MGTA_2020_12_3_a2/

[1] Bertsekas D., Shriv S., Stokhasticheskoe optimalnoe upravlenie: sluchai diskretnogo vremeni, «Nauka», M., 1985 | MR

[2] Germeier Yu. B., Vvedenie v teoriyu issledovaniya operatsii, «Nauka», M., 1971 | MR

[3] Demyanov V. F., Malozemov V. N., Vvedenie v minimaks, «Nauka», M., 1972 | MR

[4] Kantorovich L. V., Matematicheskie metody organizatsii i planirovaniya proizvodstva, Izd-vo LGU, L., 1939

[5] Karlin S., Stadden V., Chebyshevskie sistemy i ikh primenenie v analize i statistike, «Nauka», M., 1976

[6] Leikhtveis K., Vypuklye mnozhestva, «Nauka», M., 1985 | MR

[7] Markov A. A., O nekotorykh priblizheniyakh algebraicheskikh nepreryvnykh drobei, doktorskaya dissertatsiya, SPb., 1884

[8] Vinogradov I. M. (gl. red.), “Sluchainaya velichina – Yacheika”, Matematicheskaya entsiklopediya, v. 5, Sovetskaya Entsiklopediya, M., 1985

[9] Smirnov S. N., “Garantirovannyi deterministskii podkhod k superkhedzhirovaniyu: model rynka, torgovye ogranicheniya, bezarbitrazhnost i uravneniya Bellmana-Aizeksa”, Matematicheskaya Teoriya Igr i ee Prilozheniya, 10:4 (2018), 59–99 | Zbl

[10] Smirnov S. N., “Garantirovannyi deterministskii podkhod k superkhedzhirovaniyu: svoistva «bezarbitrazhnosti» rynka”, Matematicheskaya Teoriya Igr i ee Prilozheniya, 11:2 (2019), 68–95 | MR | Zbl

[11] Smirnov S. N., “Garantirovannyi deterministskii podkhod k superkhedzhirovaniyu: svoistva polunepreryvnosti i nepreryvnosti reshenii uravnenii Bellmana-Aizeksa”, Matematicheskaya Teoriya Igr i ee Prilozheniya, 11:4 (2019), 87–115 | Zbl

[12] Smirnov S. N., “A Guarantied Deterministic Approach to Superhedging: Lipschitz Properties of Solutions of the Bellman-Isaacs Equations”, Frontiers of Dynamics Games. Game Theory and Management, St. Petersburg, Birkhauser, 2019, 267–288 | MR | Zbl

[13] Smirnov S. N., “Garantirovannyi deterministskii podkhod k superkhedzhirovaniyu: smeshannye strategii i igrovoe ravnovesie”, Matematicheskaya Teoriya Igr i ee Prilozheniya, 12:1 (2020), 60–90 | MR | Zbl

[14] Smirnov S. N., Garantirovannyi deterministskii podkhod k superkhedzhirovaniyu: ravnovesie pri otsutstvii torgovykh ogranichenii, Chebyshevskii sbornik, 2020

[15] Smirnov S. N., “Obschaya teorema teorii antagonisticheskikh igr o konechnom nositele smeshannoi strategii”, Doklady Akademii Nauk, 480:1 (2018), 25–28 | MR | Zbl

[16] Shiryaev A. N., Osnovy stokhasticheskoi finansovoi matematiki, v. 2, Teoriya, FAZIS, M., 1998

[17] Shiryaev A. N., Veroyatnost – 2, MTsNMO, M., 2004

[18] Shiryaev A. N., Stokhasticheskie zadachi o razladke, MTsNMO, M., 2016

[19] Bernhard P., Engwerda J. C. et al., The Interval Market Model in Mathematical Finance: Game-Theoretic Methods, Springer, NY, 2013 | MR | Zbl

[20] Denkowski Z., Migórski S., Papageorgiou N. S., An Introduction to Nonlinear Analysis: Theory, Springer Science Business Media, NY, 2003 | MR

[21] Isii K., “The extrema of probability determined by generalized moments (I) bounded random variables”, Annals of the Institute of Statistical Mathematics, 12:2 (1960), 119–134 | DOI | MR

[22] Jacod J, Shiryaev A. N., “Local martingales and the fundamental asset pricing theorems in the discrete-time case”, Finance And Stochastics, 2:3 (1998), 259–273 | DOI | MR | Zbl

[23] Krein M., Milman D., “On extreme points of regular convex sets”, Studia Mathematica, 9 (1940), 133–138 | DOI | MR

[24] Mulholland H. P., Rogers C. A., “Representation theorems for distribution functions”, Proceedings of the London Mathematical Society, 3:2 (1958), 177–223 | DOI | MR | Zbl

[25] Richter H., “Parameterfreie absch{ä}tzung und realisierung von erwartungswerten”, Bl{ä}tter der DGVFM, 3:2 (1957), 147–162 | DOI | MR | Zbl

[26] Rockafellar R. T., Convex Analysis, Princeton University Press, Princeton, 1970 | MR | Zbl

[27] Rogosinski W. W., “Moments of non-negative mass”, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 245:1240 (1958), 1–27 | MR | Zbl

[28] Ryll-Nardzewski C., “On quasi-compact measures”, Fundamenta Mathematicae, 40:1 (1953), 125–130 | DOI | MR

[29] Smirnov S. N., “Thoughts on Financial Risk Modeling: the Role of Interpretation”, Intelligent Risk, 2:2 (2012), 12–15

[30] Sung C. H., Tam B. S., “On the Cone of a Finite Dimensional Compact Convex Set at a Point”, Linear Algebra and Its Applications, 90 (1987), 47–55 | DOI | MR | Zbl