Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MGTA_2020_12_3_a2, author = {Sergey N. Smirnov}, title = {A guaranteed deterministic approach to superhedging: most unfavorable scenarios of market behaviour and moment problem}, journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a}, pages = {50--88}, publisher = {mathdoc}, volume = {12}, number = {3}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MGTA_2020_12_3_a2/} }
TY - JOUR AU - Sergey N. Smirnov TI - A guaranteed deterministic approach to superhedging: most unfavorable scenarios of market behaviour and moment problem JO - Matematičeskaâ teoriâ igr i eë priloženiâ PY - 2020 SP - 50 EP - 88 VL - 12 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MGTA_2020_12_3_a2/ LA - ru ID - MGTA_2020_12_3_a2 ER -
%0 Journal Article %A Sergey N. Smirnov %T A guaranteed deterministic approach to superhedging: most unfavorable scenarios of market behaviour and moment problem %J Matematičeskaâ teoriâ igr i eë priloženiâ %D 2020 %P 50-88 %V 12 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/MGTA_2020_12_3_a2/ %G ru %F MGTA_2020_12_3_a2
Sergey N. Smirnov. A guaranteed deterministic approach to superhedging: most unfavorable scenarios of market behaviour and moment problem. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 12 (2020) no. 3, pp. 50-88. http://geodesic.mathdoc.fr/item/MGTA_2020_12_3_a2/
[1] Bertsekas D., Shriv S., Stokhasticheskoe optimalnoe upravlenie: sluchai diskretnogo vremeni, «Nauka», M., 1985 | MR
[2] Germeier Yu. B., Vvedenie v teoriyu issledovaniya operatsii, «Nauka», M., 1971 | MR
[3] Demyanov V. F., Malozemov V. N., Vvedenie v minimaks, «Nauka», M., 1972 | MR
[4] Kantorovich L. V., Matematicheskie metody organizatsii i planirovaniya proizvodstva, Izd-vo LGU, L., 1939
[5] Karlin S., Stadden V., Chebyshevskie sistemy i ikh primenenie v analize i statistike, «Nauka», M., 1976
[6] Leikhtveis K., Vypuklye mnozhestva, «Nauka», M., 1985 | MR
[7] Markov A. A., O nekotorykh priblizheniyakh algebraicheskikh nepreryvnykh drobei, doktorskaya dissertatsiya, SPb., 1884
[8] Vinogradov I. M. (gl. red.), “Sluchainaya velichina – Yacheika”, Matematicheskaya entsiklopediya, v. 5, Sovetskaya Entsiklopediya, M., 1985
[9] Smirnov S. N., “Garantirovannyi deterministskii podkhod k superkhedzhirovaniyu: model rynka, torgovye ogranicheniya, bezarbitrazhnost i uravneniya Bellmana-Aizeksa”, Matematicheskaya Teoriya Igr i ee Prilozheniya, 10:4 (2018), 59–99 | Zbl
[10] Smirnov S. N., “Garantirovannyi deterministskii podkhod k superkhedzhirovaniyu: svoistva «bezarbitrazhnosti» rynka”, Matematicheskaya Teoriya Igr i ee Prilozheniya, 11:2 (2019), 68–95 | MR | Zbl
[11] Smirnov S. N., “Garantirovannyi deterministskii podkhod k superkhedzhirovaniyu: svoistva polunepreryvnosti i nepreryvnosti reshenii uravnenii Bellmana-Aizeksa”, Matematicheskaya Teoriya Igr i ee Prilozheniya, 11:4 (2019), 87–115 | Zbl
[12] Smirnov S. N., “A Guarantied Deterministic Approach to Superhedging: Lipschitz Properties of Solutions of the Bellman-Isaacs Equations”, Frontiers of Dynamics Games. Game Theory and Management, St. Petersburg, Birkhauser, 2019, 267–288 | MR | Zbl
[13] Smirnov S. N., “Garantirovannyi deterministskii podkhod k superkhedzhirovaniyu: smeshannye strategii i igrovoe ravnovesie”, Matematicheskaya Teoriya Igr i ee Prilozheniya, 12:1 (2020), 60–90 | MR | Zbl
[14] Smirnov S. N., Garantirovannyi deterministskii podkhod k superkhedzhirovaniyu: ravnovesie pri otsutstvii torgovykh ogranichenii, Chebyshevskii sbornik, 2020
[15] Smirnov S. N., “Obschaya teorema teorii antagonisticheskikh igr o konechnom nositele smeshannoi strategii”, Doklady Akademii Nauk, 480:1 (2018), 25–28 | MR | Zbl
[16] Shiryaev A. N., Osnovy stokhasticheskoi finansovoi matematiki, v. 2, Teoriya, FAZIS, M., 1998
[17] Shiryaev A. N., Veroyatnost – 2, MTsNMO, M., 2004
[18] Shiryaev A. N., Stokhasticheskie zadachi o razladke, MTsNMO, M., 2016
[19] Bernhard P., Engwerda J. C. et al., The Interval Market Model in Mathematical Finance: Game-Theoretic Methods, Springer, NY, 2013 | MR | Zbl
[20] Denkowski Z., Migórski S., Papageorgiou N. S., An Introduction to Nonlinear Analysis: Theory, Springer Science Business Media, NY, 2003 | MR
[21] Isii K., “The extrema of probability determined by generalized moments (I) bounded random variables”, Annals of the Institute of Statistical Mathematics, 12:2 (1960), 119–134 | DOI | MR
[22] Jacod J, Shiryaev A. N., “Local martingales and the fundamental asset pricing theorems in the discrete-time case”, Finance And Stochastics, 2:3 (1998), 259–273 | DOI | MR | Zbl
[23] Krein M., Milman D., “On extreme points of regular convex sets”, Studia Mathematica, 9 (1940), 133–138 | DOI | MR
[24] Mulholland H. P., Rogers C. A., “Representation theorems for distribution functions”, Proceedings of the London Mathematical Society, 3:2 (1958), 177–223 | DOI | MR | Zbl
[25] Richter H., “Parameterfreie absch{ä}tzung und realisierung von erwartungswerten”, Bl{ä}tter der DGVFM, 3:2 (1957), 147–162 | DOI | MR | Zbl
[26] Rockafellar R. T., Convex Analysis, Princeton University Press, Princeton, 1970 | MR | Zbl
[27] Rogosinski W. W., “Moments of non-negative mass”, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 245:1240 (1958), 1–27 | MR | Zbl
[28] Ryll-Nardzewski C., “On quasi-compact measures”, Fundamenta Mathematicae, 40:1 (1953), 125–130 | DOI | MR
[29] Smirnov S. N., “Thoughts on Financial Risk Modeling: the Role of Interpretation”, Intelligent Risk, 2:2 (2012), 12–15
[30] Sung C. H., Tam B. S., “On the Cone of a Finite Dimensional Compact Convex Set at a Point”, Linear Algebra and Its Applications, 90 (1987), 47–55 | DOI | MR | Zbl