Multi-agent search in a set: distribution of effort and estimating the efficiency
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 12 (2020) no. 2, pp. 110-121.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a search model on the set, in which each point is a search location for valuable objects. Searchers of different efficiencies are distributed across a multitude, choosing locations based on the apriori idea of how promising each location is. Those who choose the same location compete with each other. We show that in quite free assumptions the distribution of agents coincides with that of the prospects. This allows us to estimate the specific flow of results, which is constant on the set. In order to more accurately predict this flow, which depends on the performance of individual agents, we offer a policy of bids: a reward for winning one. Cases of various distributions of uncertainty in the agent assessment of their own productivity are considered and the difference between the declared productivity and the average one is estimated.
Keywords: volunteer computing, desktop grid, throughput prediction, distributed search.
@article{MGTA_2020_12_2_a5,
     author = {Ilya A. Chernov},
     title = {Multi-agent search in a set: distribution of effort and estimating the efficiency},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {110--121},
     publisher = {mathdoc},
     volume = {12},
     number = {2},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2020_12_2_a5/}
}
TY  - JOUR
AU  - Ilya A. Chernov
TI  - Multi-agent search in a set: distribution of effort and estimating the efficiency
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2020
SP  - 110
EP  - 121
VL  - 12
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2020_12_2_a5/
LA  - ru
ID  - MGTA_2020_12_2_a5
ER  - 
%0 Journal Article
%A Ilya A. Chernov
%T Multi-agent search in a set: distribution of effort and estimating the efficiency
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2020
%P 110-121
%V 12
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2020_12_2_a5/
%G ru
%F MGTA_2020_12_2_a5
Ilya A. Chernov. Multi-agent search in a set: distribution of effort and estimating the efficiency. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 12 (2020) no. 2, pp. 110-121. http://geodesic.mathdoc.fr/item/MGTA_2020_12_2_a5/

[1] Ivashko E. E., Nikitina N. N., Möller S., “Vysokoproizvoditelnyi virtualnyi skrining v Enterprise Desktop Grid na baze BOINC”, Trudy Mezhdunarodnoi superkompyuternoi konferentsii «Nauchnyi servis v seti Internet», 2015, 58–60

[2] Durrani N., Shamsi J., “Volunteer computing: requirements, challenges, and solutions”, Journal of Network and Computer Applications, 39 (2014), 369–380

[3] Anderson D., Reed K., “Celebrating diversity in volunteer computing”, System Sciences, 42nd Hawaii International Conference (2009), 1–8

[4] Xhafa F., Abraham A., “Computational models and heuristic methods for grid scheduling problems”, Future Generation Computer Systems, 26:4 (2010), 608–621

[5] Kianpisheh S., Kargahi M., Charkari N. M., “Resource availability prediction in distributed systems: An approach for modeling non-stationary transition probabilities”, IEEE Transactions on Parallel and Distributed Systems, 28:8 (2018), 2357–2372 | DOI

[6] Mazalov V. V., Nikitina N. N., Ivashko E. E., “Hierarchical Two-Level Game Model for Tasks Scheduling in a Desktop Grid”, Applied Problems in Theory of Probabilities and Mathematical Statistics Related to Modeling of Information Systems, 2014, 641–645

[7] Nikitina N. N., Ivashko E. E., Tchernykh A., “Congestion Game Scheduling for Virtual Drug Screening Optimization”, Journal of Computer-Aided Molecular Design, 32:2 (2018), 363–374 | DOI

[8] Frank I., Basin D., “Search in games with incomplete information: a case study using Bridge card play”, Artificial Intelligence, 100 (1998), 87–123 | DOI | MR | Zbl

[9] Manzyuk M., Nikitina N., Vatutin E., “Start-up and the results of the volunteer computing project RakeSearch”, Russian Supercomputer Days, 2019 (to appear)