Corruption mechanisms in models of social and private interests combining engine in the case of one agent. Optimization approach
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 12 (2020) no. 2, pp. 36-62.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to the investigation of corruption in models of social and private interests combining (SPICE-models) in the case of one agent. The specific attention in the article is given to the optimization approach investigation. In the structure of model between the higher level (principal) and the lower levels (agents) element «supervisor» is included. Supervisor acts in interests of principal, but he can weaken principal's demands for agent in exchange of a bribe. Administrative and economic corruption mechanisms are introduced and investigated. Optimization approach is applied.
Keywords: SPICE-models, corruption mechanisms, system compatibility, administrative and economic corruption, descriptive approach, optimization approach.
@article{MGTA_2020_12_2_a2,
     author = {Olga I. Gorbaneva},
     title = {Corruption mechanisms in models of social and private interests combining engine in the case of one agent. {Optimization} approach},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {36--62},
     publisher = {mathdoc},
     volume = {12},
     number = {2},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2020_12_2_a2/}
}
TY  - JOUR
AU  - Olga I. Gorbaneva
TI  - Corruption mechanisms in models of social and private interests combining engine in the case of one agent. Optimization approach
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2020
SP  - 36
EP  - 62
VL  - 12
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2020_12_2_a2/
LA  - ru
ID  - MGTA_2020_12_2_a2
ER  - 
%0 Journal Article
%A Olga I. Gorbaneva
%T Corruption mechanisms in models of social and private interests combining engine in the case of one agent. Optimization approach
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2020
%P 36-62
%V 12
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2020_12_2_a2/
%G ru
%F MGTA_2020_12_2_a2
Olga I. Gorbaneva. Corruption mechanisms in models of social and private interests combining engine in the case of one agent. Optimization approach. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 12 (2020) no. 2, pp. 36-62. http://geodesic.mathdoc.fr/item/MGTA_2020_12_2_a2/

[1] Vasin A. A., Vasina P. A., “Ob organizatsii gosudarstvennykh inspektsii i borbe s korruptsiei”, Sovremennye tekhnologii. Sistemnyi analiz. Modelirovanie, 2008, no. S-4(20), 163–170

[2] Vasin A. A., Sazanov A. A., “Matematika protiv korruptsii: ob organizatsii gosinspektsii”, Obozrenie prikladnoi i promyshlennoi matematiki, 14:3 (2007), 519–520

[3] Germeier Yu. B., Vatel I. A., “Igry s ierarkhicheskim vektorom interesov”, Tekhnicheskaya kibernetika, 1974, no. 3, 54–69 | MR | Zbl

[4] Gorbaneva O. I., Ugolnitskii G. A., “Tsena anarkhii i mekhanizmy upravleniya v modelyakh soglasovaniya obschestvennykh i chastnykh interesov”, Matematicheskaya teoriya igr i ee prilozheniya, 7:1 (2015), 50–73 | MR | Zbl

[5] Gorbaneva O. I., Ugolnitskii G. A., “Staticheskie modeli soglasovaniya obschestvennykh i chastnykh interesov pri raspredelenii resursov”, Matematicheskaya teoriya igr i ee prilozheniya, 8:2 (2016), 28–57 | Zbl

[6] Gorbaneva O. I., Ugolnitskii G. A., “Modeli soglasovaniya obschikh i chastnykh interesov II: mekhanizmy upravleniya”, Ekonomika i menedzhment sistem upravleniya, 2018, no. 2.2(28), 272–282

[7] Gorbaneva O. I., “Modeli sochetaniya obschikh i chastnykh interesov nezavisimykh agentov”, Matematicheskaya teoriya igr i ee prilozheniya, 10:4 (2018), 3–15 | MR | Zbl

[8] Gorbaneva O. I., Ugolnitskii G. A., “Uchet korruptsii v modelyakh sochetaniya obschestvennykh i chastnykh interesov v ierarkhicheskikh sistemakh upravleniya”, Problemy upravleniya, 2016, no. 2, 62–71

[9] Gorelov M. A., Kononenko A. F., “Igry s zapreschennymi situatsiyami. Modeli s nezhestkimi ogranicheniyami”, Avtomatika i telemekhanika, 2010, no. 5, 110–121 | Zbl

[10] Zenyuk D. A., Malinetskii G. G., Faller D. S., “Sotsialnaya model korruptsii v ierarkhicheskikh strukturakh”, Preprinty IPM im. M. V. Keldysha, 2013, 087, 27 pp.

[11] Kolpak E. P., Selitskaya E. A., Gabrielyan L. A., “Matematicheskaya model korruptsii v sisteme «vlast - obschestvo»”, Molodoi uchenyi, 2015, no. 10, 9–16

[12] Kukushkin I. S., Menshikov I. S., Menshikov O. R., Moiseev N. N., “Ustoichivye kompromissy v igrakh so strukturirovannymi funktsiyami vyigrysha”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 25:12 (1985), 1761–1776 | MR | Zbl

[13] Kukushkin I. S., Menshikova O. R., Menshikov I. S., “Konflikty i kompromissy”, Matematika, kibernetika, 1986, no. 9 | MR

[14] Tokarev V. V., “Garantirovannye rezultaty v igrakh s zapreschennymi situatsiyami”, Avtomatika i telemekhanika, 2009, no. 6, 123–140 | Zbl

[15] Tokarev V. V., “Osobennosti ravnovesii v igrakh s zapreschennymi situatsiyami”, Avtomatika i telemekhanika, 2009, no. 7, 127–138 | Zbl

[16] Basar T., Oldser G. J., Dynamic Noncooperative Game Theory, Philadelphia, 1999 | MR | Zbl

[17] Mishra A., “Corruption, hierarchies and bureaucratic structure”, International Handbook on the Economics of Corruption, ed. S. Rose-Ackerman, Cheltenham, UK–Northampton, MA, USA, 2006, 189–215