Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MGTA_2020_12_2_a1, author = {Valery A. Vasil'ev}, title = {The core and superdifferential of a fuzzy {TU-cooperative} game}, journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a}, pages = {20--35}, publisher = {mathdoc}, volume = {12}, number = {2}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MGTA_2020_12_2_a1/} }
Valery A. Vasil'ev. The core and superdifferential of a fuzzy TU-cooperative game. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 12 (2020) no. 2, pp. 20-35. http://geodesic.mathdoc.fr/item/MGTA_2020_12_2_a1/
[1] Bondareva O. N., “Teoriya yadra dlya igry $n$ lits”, Vestnik LGU, ser. mat., mekh., astron., 1962, no. 13(3), 141–142 | Zbl
[2] Vasilev V. A., “Krainie tochki mnogogrannika Vebera”, Diskretnyi analiz i issledovanie operatsii. Seriya 1, 10:2 (2003), 17–55 | MR | Zbl
[3] Vasilev V. A., “Analog teoremy Bondarevoi-Shepli I. Nepustota yadra nechetkoi igry”, Matematicheskaya teoriya igr i ee prilozheniya, 9:1 (2017), 3–26 | MR | Zbl
[4] Vasilev V. A., “Analog teoremy Bondarevoi-Shepli II. Primery $V$-sbalansirovannykh nechetkikh igr”, Matematicheskaya teoriya igr i ee prilozheniya, 11:2 (2019), 3–18 | MR | Zbl
[5] Magaril-Ilyaev G. G., Tikhomirov V. M., Vypuklyi analiz i ego prilozheniya, Knizhnyi dom «LIBROKOM», M., 2011 | MR
[6] Rozenmyuller I., Kooperativnye igry i rynki, Mir, M., 1974
[7] Rokafellar R. T., Vypuklyi analiz, Mir, M., 1973
[8] Ekland I., Elementy matematicheskoi ekonomiki, Mir, M., 1983
[9] Aubin J.-P., Optima and equilibria, Springer-Verlag, Berlin–Heidelberg, 1993 | MR | Zbl
[10] Owen G., “Multilinear extensions of games”, Journal of Management Sciences, 18:5 (1972), 64–79 | DOI
[11] Peleg B., Sudhölter P., Introduction to the Theory of Cooperative Games, Kluwer Academic Publishers, Boston/Dordrecht/London, 2003 | MR