An estimate of a smooth approximation of the production function for integrtaing Hamiltonian systems
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 12 (2020) no. 1, pp. 91-115.

Voir la notice de l'article provenant de la source Math-Net.Ru

In many applied control problems in economics, ecology, demography, and other areas, the relationship between dependent and independent main variables is determined statistically, which does not guarantee the smoothness of the model functional dependence. Particularly, in economic growth models, the production function describing the dependence of the output on the production factors is commonly supposed to be everywhere smooth; however, because of this constraint, qualitative parameters affecting the output cannot be included in the model. We propose an approach overcoming the requirement for the production function to be everywhere differentiable. The method is based on a smooth approximation of the production function, which is constructed in parallel with the integration of the Hamiltonian system. A differentiable approximation of the production function is derived by constructing an asymptotic observer of the state of an auxiliary system. It should be noted that the standard approach to the approximation of nonsmooth components of the model on a finite time interval may not work here, which implies the necessity to stabilize the Hamiltonian system on an infinite time interval. The theoretical results are supported by numerical experiments for the one-sector economic growth model.
Keywords: optimal control, Pontryagin maximum principle, Hamiltonian system, asymptotic observer.
@article{MGTA_2020_12_1_a4,
     author = {Alexander M. Tarasyev and Anastasiia A. Usova},
     title = {An estimate of a smooth approximation of the production function for integrtaing {Hamiltonian} systems},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {91--115},
     publisher = {mathdoc},
     volume = {12},
     number = {1},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2020_12_1_a4/}
}
TY  - JOUR
AU  - Alexander M. Tarasyev
AU  - Anastasiia A. Usova
TI  - An estimate of a smooth approximation of the production function for integrtaing Hamiltonian systems
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2020
SP  - 91
EP  - 115
VL  - 12
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2020_12_1_a4/
LA  - ru
ID  - MGTA_2020_12_1_a4
ER  - 
%0 Journal Article
%A Alexander M. Tarasyev
%A Anastasiia A. Usova
%T An estimate of a smooth approximation of the production function for integrtaing Hamiltonian systems
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2020
%P 91-115
%V 12
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2020_12_1_a4/
%G ru
%F MGTA_2020_12_1_a4
Alexander M. Tarasyev; Anastasiia A. Usova. An estimate of a smooth approximation of the production function for integrtaing Hamiltonian systems. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 12 (2020) no. 1, pp. 91-115. http://geodesic.mathdoc.fr/item/MGTA_2020_12_1_a4/

[1] Aivazyan S. A., Metody ekonometriki, Magistr: INFRA-M, M., 2010

[2] Aseev S. M., “Metod gladkikh approksimatsii v teorii neobkhodimykh uslovii optimalnosti dlya differentsialnykh vklyuchenii”, Izv. RAN. Ser. matematicheskaya, 61:2 (1997), 3–26 | DOI | MR | Zbl

[3] Aseev S. M., Kryazhimskii A. V., “Printsip maksimuma Pontryagina i zadachi optimalnogo ekonomicheskogo rosta”, Tr. MIAN, 257, 2007, 1–272

[4] Egorov A. I., Osnovy teorii upravleniya, Fizmatlit, M., 2004 | MR

[5] Krasovskii A. A., Tarasev A. M., “Dinamicheskaya optimizatsiya investitsii v modelyakh ekonomicheskogo rosta”, Avtomat. i telemekh., 10 (2007), 38–52 | Zbl

[6] Krasovskii A. A., Tarasev A. M., “Svoistva gamiltonovykh sistem v printsipe maksimuma Pontryagina dlya zadach ekonomicheskogo rosta”, Tr. MIAN, 262, 2008, 127–145 | Zbl

[7] Kurzhanskii A. B., Upravlenie i nablyudenie v usloviyakh neopredelennosti, Nauka, M., 1977

[8] Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V., Mischenko E. F., Matematicheskaya teoriya optimalnykh protsessov, 4-e izd., Nauka, M., 1983 | MR

[9] Tarasev A. M., Usova A. A., “Postroenie regulyatora dlya gamiltonovoi sistemy dvukhsektornoi modeli ekonomicheskogo rosta”, Tr. MIAN, 271, 2010, 278–298

[10] Tarasev A. M., Usova A. A., “Stabilizatsiya gamiltonovoi sistemy dlya postroeniya optimalnykh traektorii”, Tr. MIAN, 277, 2012, 257–274

[11] Timan A. F., Teoriya priblizheniya funktsii deistvitelnogo peremennogo, Gos. izd-vo fiz.-mat. lit., M., 1960

[12] Ane B. K., Tarasyev A. M., Watanabe C., “Construction of nonlinear stabilizer for trajectories of economic growth”, J. Optim. Theory Appl., 134:2 (2007), 303–320 | DOI | MR | Zbl

[13] Arrow K. J., Production and capital. Collected papers, v. 5, The Belknap Press of Harvard University Press, Cambridge–Massachusetts–London, 1985

[14] Ayres R., Krasovskii A. A., Tarasyev A. M., “Nonlinear stabilizers of economic growth under exhausting energy resources”, Proc. of the IFAC CAO'09, 2009, 251–256

[15] Crespo Cuaresma J., Palokangas T., Tarasyev A., Dynamic systems, economic growth, and the environment, Springer, Berlin–Heidelberg, 2010 | Zbl

[16] Crespo Cuaresma J., Palokangas T., Tarasyev A., Green growth and sustainable development, Springer, Berlin–Heidelberg, 2013 | MR | Zbl

[17] Efimov D., Polyakov A., Levant A., Perruquetti W., “Convergence acceleration for observers by gain commutation”, Internat. J. Control, 2017, 1–20 | MR

[18] Grossman G. M., Helpman E., Innovation and growth in the global economy, MIT. Press, Cambridge–London, 1991

[19] Intriligator M. D., Mathematical optimization and economic theory, Classics Appl. Math., Society for Industrial and Applied Mathematics, Philadelphia, 2002 | MR

[20] Kautsky J., Nichols N. K., Van Dooren P., “Robust Pole Assignment in Linear State Feedback”, International Journal of Control, 41 (1985), 1129–1155 | DOI | MR | Zbl

[21] Khalil H. K., Nonlinear Systems, 3rd ed., Prentice Hall, Upper Saddle River, NJ, 2002 | Zbl

[22] Krasovskii A. A., Kryazhimskiy A. V., Tarasyev A. M., “Optimal control design in models of economic growth”, Evolutionary methods for design, optimization and control, CIMNE, Barcelona, 2008, 70–75

[23] Krasovskii A., Tarasyev A., “Conjugation of Hamiltonian systems in optimal control problems”, IFAC Proceedings Volumes, 41:2, Proc. of the 17th IFAC World Congress (2008), 7784–7789 | DOI

[24] Shell K., “Applications of Pontryagin maximum principle to economics”, Math. System Theory and Economics, 1969, no. 1, 241–292 | MR | Zbl

[25] Solow R. M., Growth theory: An exposition, Oxford University Press, NY, 1970

[26] Tarasyev A. M., Usova A. A., “An Iterative Direct-Backward Procedure for Construction of Optimal Trajectories in Control Problems with Infinite Horizon”, IFAC Proceedings Volumes, 44:1, Proc. of the 18th IFAC World Congress (2011), 14544–14549 | DOI

[27] Tarasyev A. M., Usova A. A., “Structure of the Jacobian in economic growth models”, IFAC-PapersOnLine, 48:25, Proc. of the 16th IFAC Workshop CAO (2015), 191–196 | DOI

[28] Tarasyev A. M., Watanabe C., “Optimal dynamics of innovation in models of economic growth”, J. Optim. Theory Appl., 108:1 (2001), 175–207 | DOI | MR