A guaranteed deterministic approach to superhedging: mixed strategies and game equilibrium
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 12 (2020) no. 1, pp. 60-90.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a discrete-time superreplication problem, a guaranteed deterministic formulation is considered: the problem is to ensure a cheapest coverage of the contingent claim on an option under all scenarios which are set using a priori defined compacts, depending on the price history: price increments at each moment of time must lie in the corresponding compacts. The market is considered with trading constraints and without transaction costs. The statement of the problem is game-theoretic in nature and leads directly to the Bellman–Isaacs equations. In this article, we introduce a mixed extension of the “market” pure strategies. Several results concerning game equilibrium are obtained.
Keywords: guaranteed estimates, deterministic price dynamics, super-replication, absence of arbitrage opportunities, Bellman–Isaacs equations, multivalued mapping, mixed strategies, game equilibrium.
Mots-clés : option, arbitrage
@article{MGTA_2020_12_1_a3,
     author = {Sergey N. Smirnov},
     title = {A guaranteed deterministic approach to superhedging: mixed strategies and game equilibrium},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {60--90},
     publisher = {mathdoc},
     volume = {12},
     number = {1},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2020_12_1_a3/}
}
TY  - JOUR
AU  - Sergey N. Smirnov
TI  - A guaranteed deterministic approach to superhedging: mixed strategies and game equilibrium
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2020
SP  - 60
EP  - 90
VL  - 12
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2020_12_1_a3/
LA  - ru
ID  - MGTA_2020_12_1_a3
ER  - 
%0 Journal Article
%A Sergey N. Smirnov
%T A guaranteed deterministic approach to superhedging: mixed strategies and game equilibrium
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2020
%P 60-90
%V 12
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2020_12_1_a3/
%G ru
%F MGTA_2020_12_1_a3
Sergey N. Smirnov. A guaranteed deterministic approach to superhedging: mixed strategies and game equilibrium. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 12 (2020) no. 1, pp. 60-90. http://geodesic.mathdoc.fr/item/MGTA_2020_12_1_a3/

[1] Billingsli P., Skhodimost veroyatnostnykh mer, Per. s angl., Izdatelstvo «Nauka». Glavnaya redaktsiya fiziko-matematicheskoi literatury, M., 1977

[2] Rokhlin D. B., “Rasshirennaya versiya teoremy Dalanga-Mortona-Villindzhera pri vypuklykh ogranicheniyakh na portfel”, Teoriya veroyatn. i ee primen., 49:3 (2004), 503–521 | DOI

[3] Rokhlin D. B., Issledovaniya po teorii arbitrazha v stokhasticheskikh modelyakh finansovykh rynkov, dissertatsiya dok. fiz.-mat. nauk: 01.01.05, Rostov-na-Donu, 2010

[4] Smirnov S. N., “Garantirovannyi deterministskii podkhod k superkhedzhirovaniyu: model rynka, torgovye ogranicheniya, bezarbitrazhnost i uravneniya Bellmana-Aizeksa”, Matematicheskaya Teoriya Igr i ee Prilozheniya, 10:4 (2018), 59–99 | Zbl

[5] Smirnov S. N., “Garantirovannyi deterministskii podkhod k superkhedzhirovaniyu: svoistva «bezarbitrazhnosti» rynka”, Matematicheskaya Teoriya Igr i ee Prilozheniya, 11:2 (2019), 68–95 | MR | Zbl

[6] Smirnov S. N., “Garantirovannyi deterministskii podkhod k superkhedzhirovaniyu: svoistva polunepreryvnosti i nepreryvnosti reshenii uravnenii Bellmana-Aizeksa”, Matematicheskaya Teoriya Igr i ee Prilozheniya, 11:4 (2019), 87–115

[7] Smirnov S. N., “A Guarantied Deterministic Approach to Superhedging: Lipschitz Properties of Solutions of the Bellman-Isaacs Equations”, Frontiers of Dynamics Games. Game Theory and Management (St. Petersburg), Birkhauser, 2019 | MR | Zbl

[8] Smirnov S. N., “Fellerovskoe perekhodnoe yadro s nositelyami mer, zadannymi mnogoznachnym otobrazheniem”, Trudy instituta matematiki i mekhaniki UrO RAN, 25, no. 1, 2019

[9] Alexandroff A. D., “Additive set-functions in abstract spaces”, Matematicheskii sbornik, 13(55):2–3 (1943), 169–238 | MR | Zbl

[10] Evstigneev I. V., Sch{ü}rger K., Taksar M. I., “On the fundamental theorem of asset pricing: random constraints and bang-bang no-arbitrage criteria”, Mathematical Finance, 14:2 (2004), 201–221 | DOI | MR | Zbl

[11] Fan K., “Minimax theorems”, Proceedings of the National Academy of Sciences, 39 (1953), 42–47 | DOI | MR

[12] Kneser H., “Sur un théorème fondamental de la théorie des jeux”, C.R. Acad. Sci. Paris, 234 (1952), 2418–2420 | MR | Zbl

[13] Mycielski J., Sẃierczkowski S., “On the Lebesgue measurability and the axiom of determinateness”, Fundamenta Mathematicae, 54 (1964), 67–71 | DOI | MR | Zbl

[14] Rockafellar R. T., Convex Analysis, Princeton University Press, Princeton, 1970 | MR | Zbl

[15] Topsoe F., Topology and measure, Lecture Notes in Mathematics, Springer-Verlag, New York, 1970 | DOI | MR | Zbl