Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MGTA_2020_12_1_a3, author = {Sergey N. Smirnov}, title = {A guaranteed deterministic approach to superhedging: mixed strategies and game equilibrium}, journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a}, pages = {60--90}, publisher = {mathdoc}, volume = {12}, number = {1}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MGTA_2020_12_1_a3/} }
TY - JOUR AU - Sergey N. Smirnov TI - A guaranteed deterministic approach to superhedging: mixed strategies and game equilibrium JO - Matematičeskaâ teoriâ igr i eë priloženiâ PY - 2020 SP - 60 EP - 90 VL - 12 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MGTA_2020_12_1_a3/ LA - ru ID - MGTA_2020_12_1_a3 ER -
Sergey N. Smirnov. A guaranteed deterministic approach to superhedging: mixed strategies and game equilibrium. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 12 (2020) no. 1, pp. 60-90. http://geodesic.mathdoc.fr/item/MGTA_2020_12_1_a3/
[1] Billingsli P., Skhodimost veroyatnostnykh mer, Per. s angl., Izdatelstvo «Nauka». Glavnaya redaktsiya fiziko-matematicheskoi literatury, M., 1977
[2] Rokhlin D. B., “Rasshirennaya versiya teoremy Dalanga-Mortona-Villindzhera pri vypuklykh ogranicheniyakh na portfel”, Teoriya veroyatn. i ee primen., 49:3 (2004), 503–521 | DOI
[3] Rokhlin D. B., Issledovaniya po teorii arbitrazha v stokhasticheskikh modelyakh finansovykh rynkov, dissertatsiya dok. fiz.-mat. nauk: 01.01.05, Rostov-na-Donu, 2010
[4] Smirnov S. N., “Garantirovannyi deterministskii podkhod k superkhedzhirovaniyu: model rynka, torgovye ogranicheniya, bezarbitrazhnost i uravneniya Bellmana-Aizeksa”, Matematicheskaya Teoriya Igr i ee Prilozheniya, 10:4 (2018), 59–99 | Zbl
[5] Smirnov S. N., “Garantirovannyi deterministskii podkhod k superkhedzhirovaniyu: svoistva «bezarbitrazhnosti» rynka”, Matematicheskaya Teoriya Igr i ee Prilozheniya, 11:2 (2019), 68–95 | MR | Zbl
[6] Smirnov S. N., “Garantirovannyi deterministskii podkhod k superkhedzhirovaniyu: svoistva polunepreryvnosti i nepreryvnosti reshenii uravnenii Bellmana-Aizeksa”, Matematicheskaya Teoriya Igr i ee Prilozheniya, 11:4 (2019), 87–115
[7] Smirnov S. N., “A Guarantied Deterministic Approach to Superhedging: Lipschitz Properties of Solutions of the Bellman-Isaacs Equations”, Frontiers of Dynamics Games. Game Theory and Management (St. Petersburg), Birkhauser, 2019 | MR | Zbl
[8] Smirnov S. N., “Fellerovskoe perekhodnoe yadro s nositelyami mer, zadannymi mnogoznachnym otobrazheniem”, Trudy instituta matematiki i mekhaniki UrO RAN, 25, no. 1, 2019
[9] Alexandroff A. D., “Additive set-functions in abstract spaces”, Matematicheskii sbornik, 13(55):2–3 (1943), 169–238 | MR | Zbl
[10] Evstigneev I. V., Sch{ü}rger K., Taksar M. I., “On the fundamental theorem of asset pricing: random constraints and bang-bang no-arbitrage criteria”, Mathematical Finance, 14:2 (2004), 201–221 | DOI | MR | Zbl
[11] Fan K., “Minimax theorems”, Proceedings of the National Academy of Sciences, 39 (1953), 42–47 | DOI | MR
[12] Kneser H., “Sur un théorème fondamental de la théorie des jeux”, C.R. Acad. Sci. Paris, 234 (1952), 2418–2420 | MR | Zbl
[13] Mycielski J., Sẃierczkowski S., “On the Lebesgue measurability and the axiom of determinateness”, Fundamenta Mathematicae, 54 (1964), 67–71 | DOI | MR | Zbl
[14] Rockafellar R. T., Convex Analysis, Princeton University Press, Princeton, 1970 | MR | Zbl
[15] Topsoe F., Topology and measure, Lecture Notes in Mathematics, Springer-Verlag, New York, 1970 | DOI | MR | Zbl