Two-factor DEA modeling and clustarization of homogeneous firms
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 11 (2019) no. 4, pp. 24-43.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper presents a clasterization model for homogeneous firms using effectiveness of their activities over a certain time period. The firm efficiency is investigated by the DEA (Data envelopment analysis) methodology, which is based on solving optimization problems and allows to compare firms taking into account many factors of their activities. At the second step of the analysis, the time series of estimators of firm effectiveness obtained as a result of DEA modeling are used to cluster firms and find stable partitions of the set of firms.
Keywords: DEA modeling, time series clustarization, analysis of firm efficiencies.
@article{MGTA_2019_11_4_a2,
     author = {Vladimir M. Bure and Elena M. Parilina and Kseniya Yu. Staroverova},
     title = {Two-factor {DEA} modeling and clustarization of homogeneous firms},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {24--43},
     publisher = {mathdoc},
     volume = {11},
     number = {4},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2019_11_4_a2/}
}
TY  - JOUR
AU  - Vladimir M. Bure
AU  - Elena M. Parilina
AU  - Kseniya Yu. Staroverova
TI  - Two-factor DEA modeling and clustarization of homogeneous firms
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2019
SP  - 24
EP  - 43
VL  - 11
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2019_11_4_a2/
LA  - ru
ID  - MGTA_2019_11_4_a2
ER  - 
%0 Journal Article
%A Vladimir M. Bure
%A Elena M. Parilina
%A Kseniya Yu. Staroverova
%T Two-factor DEA modeling and clustarization of homogeneous firms
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2019
%P 24-43
%V 11
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2019_11_4_a2/
%G ru
%F MGTA_2019_11_4_a2
Vladimir M. Bure; Elena M. Parilina; Kseniya Yu. Staroverova. Two-factor DEA modeling and clustarization of homogeneous firms. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 11 (2019) no. 4, pp. 24-43. http://geodesic.mathdoc.fr/item/MGTA_2019_11_4_a2/

[1] Yu. V. Bondarenko, Yu. V. Glazeva, N. A. Butyrina, “Algoritm kolichestvennoi otsenki effektivnosti deyatelnosti rossiiskikh bankov na osnove podkhoda DEA”, Upravlenie stroitelstvom, 2018, no. 1 (10), 109–114 | MR

[2] V. M. Bure, K. Yu. Staroverova, “Primenenie teorii kooperativnykh igr s koalitsionnoi strukturoi dlya klasterizatsii dannykh”, Matematicheskaya teoriya igr i ee prilozheniya, 10:1 (2018), 23–39 | MR | Zbl

[3] N. A. Ermolin, V. V. Mazalov, A. A. Pechnikov, “Teoretiko-igrovye metody nakhozhdeniya soobschestv v akademicheskom Vebe”, Trudy SPIIRAN, 55 (2017), 237–254 | DOI

[4] E. M. Parilina, A. A. Sedakov, “Ustoichivost koalitsionnykh struktur odnoi modeli bankovskoi kooperatsii”, Matematicheskaya Teoriya Igr i ee Prilozheniya, 4:4 (2012), 45–62 | Zbl

[5] K. Yu. Staroverova, V. M. Bure, “Mera razlichiya vremennykh ryadov, osnovannaya na ikh kharakteristikakh”, Vestnik Sankt-Peterburgskogo universiteta. Prikladnaya matematika. Informatika. Protsessy upravleniya, 13:1 (2017), 51–60 | MR

[6] P. Andersen, N. C. Petersen, “A Procedure for Ranking Efficient Units in Data Envelopment Analysis”, Management Science, 39:10 (1993), 1261–1264 | DOI | Zbl

[7] K. E. Avrachenkov, A. Y. Kondratev, V. V. Mazalov, D. G. Rubanov, “Network partitioning algorithms as cooperative games”, Computational Social Networks, 5:11 (2018), 1–28

[8] A. Charnes, W. W. Cooper, E. Rhodes, “Measuring efficiency of decision making units”, European Journal of Operational Research, 2:6 (1978), 429–444 | DOI | MR | Zbl

[9] A. D. Chouakria, P. N. Nagabhushan, “Adaptive dissimilarity index for measuring time series proximity”, Advances in Data Analysis and Classification, 1:1 (2007), 5–21 | DOI | MR | Zbl

[10] C. W. Cobb, P. H. Douglas, “A Theory of Production”, American Economic Review, 18:1 (1928), 139–165

[11] F. Fiala, “Project portfolio designing using data envelopment analysis and De Novo optimisation”, Central European Journal of Operations Research, 26 (2018), 847–859 | DOI | MR | Zbl

[12] H. Omrani, P. Fahimi, A. Mahmood, “A data envelopment analysis game theory approach for constructing composite indicator: An application to find out development degree of cities in West Azarbaijan province of Iran”, Socio-Economic Planning Sciences (to appear)

[13] H. Omrani, K. Shafaat, A. Emrouznejad, “An integrated fuzzy clustering cooperative game data envelopment analysis model with application in hospital efficiency”, Expert Systems With Applications, 114 (2018), 615–628 | DOI

[14] Y. Shao, G. Bi, F. Yang, Q. Xia, “Resource allocation for branch network system with considering heterogeneity based on DEA method”, Central European Journal of Operations Research, 26 (2018), 1005–1025 | DOI | MR | Zbl

[15] A. Sedakov, E. Parilina, Yu. Volobuev, D. Klimuk, “Existence of Stable Coalition Structures in Three-person Games”, Contributions to Game Theory and Management, 6 (2013), 407–422 | MR