Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MGTA_2019_11_3_a3, author = {Sinu Lal T.S. and Achyutha Krishnamoorthy and Vargese C. Joshua}, title = {A multiserver tandem queue with a specialist server operating with a vacation strategy}, journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a}, pages = {31--52}, publisher = {mathdoc}, volume = {11}, number = {3}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MGTA_2019_11_3_a3/} }
TY - JOUR AU - Sinu Lal T.S. AU - Achyutha Krishnamoorthy AU - Vargese C. Joshua TI - A multiserver tandem queue with a specialist server operating with a vacation strategy JO - Matematičeskaâ teoriâ igr i eë priloženiâ PY - 2019 SP - 31 EP - 52 VL - 11 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MGTA_2019_11_3_a3/ LA - ru ID - MGTA_2019_11_3_a3 ER -
%0 Journal Article %A Sinu Lal T.S. %A Achyutha Krishnamoorthy %A Vargese C. Joshua %T A multiserver tandem queue with a specialist server operating with a vacation strategy %J Matematičeskaâ teoriâ igr i eë priloženiâ %D 2019 %P 31-52 %V 11 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/MGTA_2019_11_3_a3/ %G ru %F MGTA_2019_11_3_a3
Sinu Lal T.S.; Achyutha Krishnamoorthy; Vargese C. Joshua. A multiserver tandem queue with a specialist server operating with a vacation strategy. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 11 (2019) no. 3, pp. 31-52. http://geodesic.mathdoc.fr/item/MGTA_2019_11_3_a3/
[1] Baumann H., Sandmann W., “Multi-server tandem queue with Markovian arrival process, phase-type service times and finite buffers”, European Journal of Operations Research, 256:1 (2017), 187–195 | MR | Zbl
[2] Chakravarthy S. R., Krishnamoorthy A., Joshua V. C., “Analysis of multi-server retrial queue with search of customers from the orbit”, Performance Evaluation, 63:8 (2006), 776–798
[3] Chou C. F., Golubchik L., Lui J. C. S., “Multiclass multiserver threshold-based systems: A study of noninstantaneous server activation”, IEEE Transactions on Parallel and Distributed Systems, 18:1 (2007), 96–110 | MR
[4] Deepak T. G., Joshua V. C., Krishnamoorthy A., “Queues with postponed work”, Sociedad de Estadistica e Investigacion operativa Top, 12:2 (2004), 375–398 | MR | Zbl
[5] Dhanya B., Krishnamoorthy A., Joshua V. C., “Token based parallel processing queueing system with priority”, Distributed Computer and Communication Network, 700 (2017), 231–139
[6] Gomez-Corral A., “A Tandem queue with blocking and Markovian arrival process”, Queueing Systems, 41:4 (2002), 343–370 | MR | Zbl
[7] Gomez-Corral A., Martos M. E., “Performance of two stage tandem queues with Blocking: The impact of several flows of signals”, Performance Evaluation, 63:9–10 (2006), 910–938
[8] Gomez-Corral A., Martos M. E., “Matrix geometric approximations for tandem queues with blocking and repeated attempt”, Operations Research Letters, 30:6 (2002), 360–374 | MR | Zbl
[9] Ibe O. C., Keilson J., “Multi-server threshold queues with hysteresis”, Performance Evaluation, 21:3 (1995), 185–213 | MR | Zbl
[10] Kim C., Dudin A. N., Dudin S., Dudina O., “Tandem queueing system with impatient customers as a model of call center with interactive voice response”, Performance Evaluation, 70:6 (2013), 440–453 | MR
[11] Kim C., Dudin A. N., Dudina O., Dudin S., “Tandem queueing system with infinite and finite intermediate buffers and generalized phase-type service time distribution”, European Journal of Operations Research, 235:1 (2014), 170–179 | MR | Zbl
[12] Kim C., Dudin A. N., Dudin S., Dudina O., “Hysterisis control by the number of active servers in Queueing System MMAP/PH/N with Priority Service”, Performance Evaluation, 101 (2016), 20–33 | MR
[13] Kim C., Klimenok V. I., Dudin A. N., “Priority tandem queueing system with retrials and reservation of channels as a model of call center”, Computers and Industrial Engineering, 96 (2016), 61–71
[14] Latouche G., Ramaswami V., Introduction to Matrix Analytic Methods in Stochastic Modeling, SIAM, 1999 | MR | Zbl
[15] Lui J. C. S., Golubchik L., “Stochastic coplement analysis of multiserver threshold queues with hysterisis”, Performance Evaluation, 35:2 (1999), 19–48
[16] Mathew A. P., Krishnamoorthy A., Joshua V. C., “A Retrial queueing system with orbital search of customers lost from an offer zone”, Information Technologies and Mathematical Modeling, Communications in Computer and Information Science, 912, Springer, 2018, 39–54
[17] Neuts M. F., Matrix geometric solutions in stochastic models – an algorithmic approach, John Hopkins University Press, 1981 | MR | Zbl
[18] Perros H. G., “A Bibliography of papers on queueing networks with finite capacity queues”, Performance Evaluation, 10:3 (1989), 255–260 | MR