Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MGTA_2019_11_2_a4, author = {Andrey V. Chernov}, title = {On the problem of solving multimove games under time deficit}, journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a}, pages = {96--120}, publisher = {mathdoc}, volume = {11}, number = {2}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MGTA_2019_11_2_a4/} }
Andrey V. Chernov. On the problem of solving multimove games under time deficit. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 11 (2019) no. 2, pp. 96-120. http://geodesic.mathdoc.fr/item/MGTA_2019_11_2_a4/
[1] Vasin A. A., Morozov V. V., Vvedenie v teoriyu igr s prilozheniyami k ekonomike, MGU, M., 2003, 278 pp.
[2] Venttsel E. S., Ovcharov L. A., Teoriya veroyatnostei i ee inzhenernye prilozheniya, Vysshaya shkola, M., 2000, 480 pp.
[3] Gorelik V. A., Kononenko A. F., Teoretiko-igrovye modeli prinyatiya reshenii v ekologo-ekonomicheskikh sistemakh, Radio i svyaz, M., 1982, 145 pp. | MR
[4] Zhukovskii V. I., Kooperativnye igry pri neopredelennosti i ikh prilozheniya, Editorial URSS, M., 1999, 336 pp.
[5] Kononenko A. F., Khalezov A. D., Chumakov V. V., Prinyatie reshenii v usloviyakh neopredelennosti, VTs AN SSSR, M., 1991, 196 pp.
[6] Petrosyan L. A., Kuzyutin D. V., Ustoichivye resheniya pozitsionnykh igr, SPbGU, SPb., 2008, 327 pp.
[7] Petrosyan O. L., “Model mnogoshagovykh igr s uchetom vremeni realizatsii alternativy”, MTIiP, 7:2 (2015), 49–68 | MR | Zbl
[8] Takha Kh. A., Vvedenie v issledovanie operatsii, Izdatelskii dom «Vilyams», M., 2001, 912 pp.
[9] Ugolnitskii G. A., Ierarkhicheskoe upravlenie ustoichivym razvitiem, Fizmatlit, M., 2010, 336 pp.
[10] Shubik M., “Nastoyaschee i buduschee teorii igr”, MTIiP, 4:1 (2012), 93–116 | MR | Zbl
[11] Harsanyi J. C., “Games with Incomplete Information Played by “Bayesian” Players. Part I; II; III”, Management Science, 14 (1968), 159–182 ; 320–334 ; 486–502 | DOI | MR | Zbl | Zbl