Modified Mayerson value for determining the centrality of graph vertices
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 11 (2019) no. 2, pp. 19-39
Voir la notice de l'article provenant de la source Math-Net.Ru
To analyze the structure of social networks, we can use methods of cooperative game theory. One of such methods is based on the calculation of the Myerson values as a measure of the centrality of the vertices in the graph. In this case, the number of paths of a certain length in the subgraphs corresponding to the coalitions is used as the characteristic function. The paper proposes a modification of the Myerson value for the case when the paths in the graph containing cycles are included in the consideration. The effectiveness of this approach is shown on a number of examples.
Keywords:
networks, paths with cycles, centrality measure, cooperative game, Myerson value.
@article{MGTA_2019_11_2_a1,
author = {Vladimir V. Mazalov and Vitaliya A. Khitraya},
title = {Modified {Mayerson} value for determining the centrality of graph vertices},
journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
pages = {19--39},
publisher = {mathdoc},
volume = {11},
number = {2},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MGTA_2019_11_2_a1/}
}
TY - JOUR AU - Vladimir V. Mazalov AU - Vitaliya A. Khitraya TI - Modified Mayerson value for determining the centrality of graph vertices JO - Matematičeskaâ teoriâ igr i eë priloženiâ PY - 2019 SP - 19 EP - 39 VL - 11 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MGTA_2019_11_2_a1/ LA - ru ID - MGTA_2019_11_2_a1 ER -
%0 Journal Article %A Vladimir V. Mazalov %A Vitaliya A. Khitraya %T Modified Mayerson value for determining the centrality of graph vertices %J Matematičeskaâ teoriâ igr i eë priloženiâ %D 2019 %P 19-39 %V 11 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/MGTA_2019_11_2_a1/ %G ru %F MGTA_2019_11_2_a1
Vladimir V. Mazalov; Vitaliya A. Khitraya. Modified Mayerson value for determining the centrality of graph vertices. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 11 (2019) no. 2, pp. 19-39. http://geodesic.mathdoc.fr/item/MGTA_2019_11_2_a1/