@article{MGTA_2019_11_2_a0,
author = {Valery A. Vasil'ev},
title = {An analog of {Bondareva{\textendash}Shapley} {theorem~II.} {Examples} of $V$-balanced fuzzy games},
journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
pages = {3--18},
year = {2019},
volume = {11},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MGTA_2019_11_2_a0/}
}
Valery A. Vasil'ev. An analog of Bondareva–Shapley theorem II. Examples of $V$-balanced fuzzy games. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 11 (2019) no. 2, pp. 3-18. http://geodesic.mathdoc.fr/item/MGTA_2019_11_2_a0/
[1] Bondareva O. N., “Teoriya yadra dlya igry $n$ lits”, Vestnik LGU. Ser. mat., mekh., astron., 13:3 (1962), 141–142 | Zbl
[2] Vasilev V. A., “Analog teoremy Bondarevoi-Shepli I. Nepustota yadra nechetkoi igry”, Matematicheskaya teoriya igr i ee prilozheniya, 9:1 (2017), 3–26 | MR | Zbl
[3] Rozenmyuller I., Kooperativnye igry i rynki, Mir, M., 1974
[4] Aubin J.-P., Optima and equilibria, Springer-Verlag, Berlin–Heidelberg, 1993 | MR | Zbl
[5] Littlechild S. C., Owen G., “A simple expression for the Shapley value in a special case”, Management Science, 20 (1973), 370–372 | DOI | MR | Zbl
[6] Owen G., “On the core of linear production game”, Math. Programming, 9 (1975), 358–370 | DOI | MR | Zbl
[7] Peleg B., Sudhölter P., Introduction to the Theory of Cooperative Games, Kluwer Academic Publishers, Boston–Dordrecht–London, 2003 | MR
[8] Shapley L. S., “On balanced sets and cores”, Naval Res. Logist. Quart., 14:4 (1967), 453–460 | DOI