Individual stability of coalition structures in three-person games
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 11 (2019) no. 1, pp. 73-95.

Voir la notice de l'article provenant de la source Math-Net.Ru

Cooperative games with coalition structures are considered and a principle of coalition structure individual stability with respect to some cooperative solution concepts is determined. In comparison with the paper (Sedakov et al., 2013), we consider the opportunity of the players to block the deviation of a player in case their payoffs decrease with the deviation. We prove the existence of an individually stable coalition structure with respect to the Shapley and equal surplus division values for the case of three-person games according to the new definition of a stable coalition structure.
Mots-clés : coalition structure
Keywords: stability, the Shapley value, the ES-value.
@article{MGTA_2019_11_1_a3,
     author = {Fengyan Sun and Elena M. Parilina and Hongwei Gao},
     title = {Individual stability of coalition structures in three-person games},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {73--95},
     publisher = {mathdoc},
     volume = {11},
     number = {1},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2019_11_1_a3/}
}
TY  - JOUR
AU  - Fengyan Sun
AU  - Elena M. Parilina
AU  - Hongwei Gao
TI  - Individual stability of coalition structures in three-person games
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2019
SP  - 73
EP  - 95
VL  - 11
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2019_11_1_a3/
LA  - ru
ID  - MGTA_2019_11_1_a3
ER  - 
%0 Journal Article
%A Fengyan Sun
%A Elena M. Parilina
%A Hongwei Gao
%T Individual stability of coalition structures in three-person games
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2019
%P 73-95
%V 11
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2019_11_1_a3/
%G ru
%F MGTA_2019_11_1_a3
Fengyan Sun; Elena M. Parilina; Hongwei Gao. Individual stability of coalition structures in three-person games. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 11 (2019) no. 1, pp. 73-95. http://geodesic.mathdoc.fr/item/MGTA_2019_11_1_a3/

[1] d'Aspremont C., Jacquemin A., Gabszewicz J. J., Weymark J. A., “On the stability of collusive price leadership”, Canadian Journal of Economics, 16:1 (1983), 17–25 | DOI

[2] Aumann R. J., Dreze J. H., “Cooperative Games with Coalition Structures”, International Journal of Game Theory, 3 (1974), 217–237 | DOI | MR | Zbl

[3] Avrachenkov K. E., Kondratev A. Y, Mazalov V. V., Rubanov D. G., “Network partitioning algorithms as cooperative games”, Computational Social Networks, 5:11 (2018), 1–28

[4] Bogomolnaia A., Jackson M. O., “The Stability of Hedonic Coalition Structures”, Games and Economic Behavior, 38 (2002), 201–230 | DOI | MR | Zbl

[5] Carraro C., “The Structure of International Environmental Agreements”, International Environmental Agreements on Climate Change, ed. C. Carraro, Kluwer Academic Publishers, Dordrecht, 1997, 9–26

[6] Drèze J., Greenberg J., “Hedonic Coalitions: Optimality and Stability”, Econometrica, 48:4 (1980), 987–1003 | DOI | MR | Zbl

[7] Driessen T., Funaki Y., “Coincidence of and collinearity between game theoretic solutions”, OR Spectrum, 13:1 (1991), 15–30 | DOI | MR | Zbl

[8] Gao H., Petrosyan L., Qiao H., Sedakov A., “Cooperation in two-stage games on undirected networks”, Journal of Systems Science and Complexity, 30:3 (2017), 680–693 | DOI | MR | Zbl

[9] Greenberg J., “Pure and local public goods: A game-theoretic approach”, Public Finance, ed. A. Sandmo, Heath and Co, Lexington, MA, 1977

[10] Haeringer G., “Stable Coalition Structures with Fixed Decision Scheme. Economics with Heterogeneous Interacting Agents”, Lecture Notes in Economics and Mathematical Systems, 503, 2001, 217–230 | DOI | MR | Zbl

[11] Hart S., Kurz M., “Endogenous formation of coalitions”, Econometrica, 52 (1983), 1047–1064 | DOI | MR

[12] Parilina E., Sedakov A., “Stable Bank Cooperation for Cost Reduction Problem”, The Czech Economic Review, 8:1 (2014), 7–25 | MR

[13] Parilina E., Sedakov A., “Stable Cooperation in Graph-Restricted Games”, Contributions to Game Theory and Management, 7 (2014), 271–281 | MR

[14] Rettieva A. N., “Stable Coalition Structure in Bioresource Management Problem”, Ecological Modelling, 235–236 (2012), 102–118 | DOI

[15] Sedakov A., Parilina E., Volobuev Yu., Klimuk D., “Existence of Stable Coalition Structures in Three-person Games”, Contributions to Game Theory and Management, 6 (2013), 407–422 | MR

[16] Shapley L. S., “A value for n-person games”, Contributions to the Theory of Games, v. II, eds. Kuhn H. W., Tucker A. W., Princeton University Press, 1953, 307–317 | MR

[17] Sun F. Y., Parilina E., “Existence of Stable Coalition Structures in Four-person Games”, Contributions to Game Theory and Management, 11 (2018), 224–248 | MR

[18] Xue L., “Coalition stability under imperfect foresight”, Economic Theory, 11:3 (1998), 603–627 | DOI | MR | Zbl

[19] de Zeeuw A., “Dynamic effects on the stability of international environmental agreements”, Journal of Environmental Economics and Management, 55:2 (2008), 163–174 | DOI | Zbl

[20] de Zeeuw A., “International Environmental Agreements”, Annual Review of Resource Economics, 7 (2015), 151–168 | DOI