Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MGTA_2019_11_1_a1, author = {Michael R. Gavrilovich and Victoria L. Kreps}, title = {Signal decoding with help of finite automata: application to games with incomplete information}, journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a}, pages = {21--38}, publisher = {mathdoc}, volume = {11}, number = {1}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MGTA_2019_11_1_a1/} }
TY - JOUR AU - Michael R. Gavrilovich AU - Victoria L. Kreps TI - Signal decoding with help of finite automata: application to games with incomplete information JO - Matematičeskaâ teoriâ igr i eë priloženiâ PY - 2019 SP - 21 EP - 38 VL - 11 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MGTA_2019_11_1_a1/ LA - ru ID - MGTA_2019_11_1_a1 ER -
%0 Journal Article %A Michael R. Gavrilovich %A Victoria L. Kreps %T Signal decoding with help of finite automata: application to games with incomplete information %J Matematičeskaâ teoriâ igr i eë priloženiâ %D 2019 %P 21-38 %V 11 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/MGTA_2019_11_1_a1/ %G ru %F MGTA_2019_11_1_a1
Michael R. Gavrilovich; Victoria L. Kreps. Signal decoding with help of finite automata: application to games with incomplete information. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 11 (2019) no. 1, pp. 21-38. http://geodesic.mathdoc.fr/item/MGTA_2019_11_1_a1/
[1] Aumann R., Maschler M., Repeated Games with Incomplete Information, The MIT Press, Cambridge–Massachusetts–London, 1995 | MR
[2] Gavrilovich M., Kreps V., “Games with symmetric incomplete information and asymmetric computational resources”, Int. Game Theory Review, 20:2 (2018), 17500034 | DOI | MR
[3] Harsanyi J., “Games with Incomplete Information Played by Bayesian Players. Parts I–III”, Management Science, 14 (1967–68), 159–182 ; 320–334; 486–502 | DOI | MR | Zbl
[4] Kobrinskii N., Trakhtenbrot B., Introduction to the Theory of Finite Automata, North-Holland, Amsterdam, 1965 | MR
[5] MacWilliams F. J., Sloane N. J. A., The theory of error-correcting codes, North-Holland, Amsterdam, 1977 | MR | Zbl
[6] Neyman A., “Cooperation, repetition and automata”, Cooperation: Game-Theoretic Approaches, NATO ASI Series F, 155, eds. Hart S., Mas-Colell A., Springer-Verlag, 1997, 233–255 | MR | Zbl
[7] Neyman A., “Finitely repeated games with finite automata”, Math. Oper. Res., 23 (1998), 513–552 | DOI | MR | Zbl
[8] Romik D., Stirling's Approximation for n!: The Ultimate Short Proof?, The American Mathematical Monthly, 107:6 (2000), 556–557 | DOI | MR | Zbl
[9] Sakarovitch J., Elements of Automata Theory, Cambridge University Press, 2009 | MR | Zbl