Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MGTA_2018_10_4_a3, author = {Sergey N. Smirnov}, title = {A guaranteed deterministic approach to superhedging: financial market model,trading constraints and {Bellman--Isaacs} equations}, journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a}, pages = {59--99}, publisher = {mathdoc}, volume = {10}, number = {4}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MGTA_2018_10_4_a3/} }
TY - JOUR AU - Sergey N. Smirnov TI - A guaranteed deterministic approach to superhedging: financial market model,trading constraints and Bellman--Isaacs equations JO - Matematičeskaâ teoriâ igr i eë priloženiâ PY - 2018 SP - 59 EP - 99 VL - 10 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MGTA_2018_10_4_a3/ LA - ru ID - MGTA_2018_10_4_a3 ER -
%0 Journal Article %A Sergey N. Smirnov %T A guaranteed deterministic approach to superhedging: financial market model,trading constraints and Bellman--Isaacs equations %J Matematičeskaâ teoriâ igr i eë priloženiâ %D 2018 %P 59-99 %V 10 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/MGTA_2018_10_4_a3/ %G ru %F MGTA_2018_10_4_a3
Sergey N. Smirnov. A guaranteed deterministic approach to superhedging: financial market model,trading constraints and Bellman--Isaacs equations. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 10 (2018) no. 4, pp. 59-99. http://geodesic.mathdoc.fr/item/MGTA_2018_10_4_a3/
[1] Andreev N. A., Smirnov S. N., “Garantirovannyi podkhod k zadacham investirovaniya i khedzhirovaniya”, «Tikhonovskie chteniya»: nauchnaya konferentsiya, Tezisy dokladov: posvyaschaetsya pamyati akademika Andreya Nikolaevicha Tikhonova (29 oktyabrya–2 noyabrya 2018 g.), MAKS Press, M., 2018, 11
[2] Arkhipov V. M., Zakharov I. Yu., Naumenko V. V., Smirnov S. N., Predposylki vvedeniya kolichestvennykh mer effektivnosti dlya GER, Vysshaya shkola ekonomiki. Seriya WP16 «Finansovaya inzheneriya, risk-menedzhment i aktuarnaya nauka». Preprint No WP16/2007/05, 2007
[3] Bertsekas D., Shriv S., Stokhasticheskoe optimalnoe upravlenie: sluchai diskretnogo vremeni, Perevod s angl., ed. A.A. Yushkevich, Izdatelstvo «Nauka». Glavnaya redaktsiya fiziko-matematicheskoi literatury, M., 1985, 287 pp.
[4] Zakharov A. V., Mussa D. A., Garantirovannyi podkhod k zadache tsenoobrazovaniya i khedzhirovaniya dlya sluchaya obuslovlennogo obyazatelstva s neskolkimi riskovymi aktivami, Dep. VINITI, No 1092–B01, 2001, 19 pp.
[5] Zverev O. V., Khametov V. M., “Minimaksnoe khedzhirovanie optsionov evropeiskogo tipa na nepolnykh rynkakh (diskretnoe vremya)”, Obozrenie prikladnoi i promyshlennoi matematiki, 18:1 (2011), 26–54 | MR
[6] Zverev O. V., Khametov V. M., “Minimaksnoe khedzhirovanie optsionov evropeiskogo tipa na nepolnykh rynkakh (diskretnoe vremya). II”, Obozrenie prikladnoi i promyshlennoi matematiki, 18:2 (2011), 193–204 | MR
[7] Zverev O. V., Khametov V. M., “Minimaksnoe khedzhirovanie optsionov evropeiskogo tipa na kompaktnom (1,S)-rynke”, Obozrenie prikladnoi i promyshlennoi matematiki, 18:11 (2011), 121–122
[8] Kurzhanskii A. B., Upravlenie i nablyudenie v usloviyakh neopredelennosti, Izdatelstvo «Nauka». Glavnaya redaktsiya fiziko-matematicheskoi literatury, M., 1977, 392 pp.
[9] Molchanov S. A., “Silno fellerovskoe svoistvo diffuzionnykh protsessov na gladkikh mnogoobraziyakh”, Teoriya veroyatnostei i ee primeneniya, 13:3 (1968), 493–498 | MR | Zbl
[10] Mussa D. A., Modelirovanie finansovykh rynkov metodami stokhasticheskikh differentsialnykh uravnenii, Dissertatsiya kand. fiz.-mat. nauk: 01.01.02, M., 2001, 72 pp. | Zbl
[11] Smirnov S. N., “Obschaya teorema teorii antagonisticheskikh igr o konechnom nositele smeshannoi strategii”, Doklady Akademii Nauk, 480:1 (2018), 25–28 | DOI | MR | Zbl
[12] Smirnov S. N., “Fellerovskoe perekhodnoe yadro s nositelyami mer, zadannymi mnogoznachnym otobrazheniem”, Trudy instituta matematiki i mekhaniki UrO RAN, 25, no. 1, 2019
[13] Smirnov S. N., Zakharov A. V., Polimatidi I. V., Balabushkin A. N., Sposob elektronnoi birzhevoi torgovli proizvodnymi finansovymi instrumentami, sposoby opredeleniya urovnya depozitnoi marzhi, sposoby uregulirovaniya situatsii s defitsitom marzhi, Patent #2226714, 2004
[14] Khametov V. M., Chalov D. M., “Evropeiskii optsion — eto beskonechnaya antagonisticheskaya igra”, Obozrenie prikladnoi i promyshlennoi matematiki, 11:2 (2004), 264–265
[15] Shiryaev A. N., Osnovy stokhasticheskoi finansovoi matematiki, v. 1, Fakty. Modeli, FAZIS, M., 1998, 512 pp.
[16] Shiryaev A. N., Osnovy stokhasticheskoi finansovoi matematiki, v. 2, Teoriya, FAZIS, M., 1998, 544 pp.
[17] Shiryaev A. N., Veroyatnost–1, MTsNMO, M., 2004, 520 pp.
[18] Aksamit A., Deng S., Obloj J., Tan X., “Robust pricing–hedging duality for American options in discrete time financial markets”, Financial Mathematics, 2018 | DOI | MR | Zbl
[19] Bayraktar E., Zhang Y., “Fundamental theorem of asset pricing under transaction costs and model uncertainty”, Mathematics of Operations Research, 41:3 (2016), 1039–1054 | DOI | MR | Zbl
[20] Bayraktar E., Zhou Z., “On arbitrage and duality under model uncertainty and portfolio constraints”, Mathematical Finance, 27:4 (2017), 988–1012 | DOI | MR | Zbl
[21] Bellman R., Dynamic Programming, Princeton Univ. Press, Princeton, 1957, 363 pp. | MR | Zbl
[22] Bernhard P., “The robust control approach to option pricing and interval models: An overview”, Numerical Methods in Finance, eds. Breton M., Ben-Ameur H., Springer, New York, 2005, 91–108 | DOI | MR | Zbl
[23] Bernhard P., Engwerda J. C., Roorda B., Schumacher J., Kolokoltsov V., Saint-Pierre P., Aubin J.-P., The Interval Market Model in Mathematical Finance: Game-Theoretic Methods, Springer, New York, 2013, 348 pp. | MR | Zbl
[24] Bertsekas D. P., Shreve S. E., Stochastic Optimal Control: The Discrete-Time Case, Academic Press, 1978, 340 pp. | MR | Zbl
[25] Bouchard B., Nutz M., “Arbitrage and duality in nondominated discrete-time models”, Annals of Applied Probability, 25:2 (2015), 823–859 | DOI | MR | Zbl
[26] Burzoni M., Frittelli M., Hou Z., Maggis M., Obloj J., Pointwise arbitrage pricing theory in discrete time, 2016, arXiv: 1612.07618
[27] Burzoni M., Frittelli M., Hou Z., Maggis M., “Universal arbitrage aggregator in discrete-time markets under uncertainty”, Finance and Stochastics, 20:1 (2016), 1–50 | DOI | MR | Zbl
[28] Burzoni M., Frittelli M., Maggis M., “Model-free superhedging duality”, The Annals of Applied Probability, 27:3 (2017), 1452–1477 | DOI | MR | Zbl
[29] Carassus L., Gobet E., Temam E., “A class of financial products and models where super-replication prices are explicit”, The 6th the Ritsumeikan International Conference on Stochastic processes and applications to mathematical finance (2006)
[30] Carassus L., Vargiolu T., Super-replication price for asset prices having bounded increments in discrete time, , 2010 hal.archives-ouvertes.fr/hal-0051166
[31] Cvitanić J., Shreve S., Soner H., “There is no nontrivial hedging portfolio for option pricing with transaction costs”, Annals of Applied Probability, 5 (1995), 327–355 | MR | Zbl
[32] Dana R.-A., Jeanblanc-Picqué M., Marchés financiers en temps continu, 1st edition, Economica, Paris, 1994, 330 pp.
[33] Denis L., Martini C., “A theoretical framework for the pricing of contingent claims in the presence of model uncertainty”, Annals of Applied Probability, 16:2 (2006), 827–852 | DOI | MR | Zbl
[34] F{ö}llmer H., Kabanov Y., “Optional decomposition and Lagrange multipliers”, Finance and Stochastics, 2:1 (1997), 69–81 | DOI | MR
[35] F{ö}llmer H., Schied A., Stochastic Finance. An Introduction in Discrete Time, 4nd edition, Walter de Gruyter, New York, 2016, 608 pp. | MR
[36] Hobson D., “Robust hedging of the lookback option”, Finance and Stochastics, 2:4 (1998), 329–347 | DOI | MR | Zbl
[37] Karoui N. E., Quenez M., “Dynamic programming and pricing of contingent claims in an incomplete market”, SIAM journal on Control and Optimization, 33:1 (1995), 29–66 | DOI | MR | Zbl
[38] Knight F. H., Risk, uncertainty and profit, Houghton Mifflin Co., New York, 1921, 381 pp.
[39] Kolokoltsov V. N., “Nonexpansive maps and option pricing theory”, Kybernetika, 34:6 (1998), 713–724 | MR | Zbl
[40] Kramkov D., “Optional decomposition of supermartingales and hedging contingent claims in incomplete security markets”, Probability Theory and Related Fields, 105:4 (1996), 459–479 | DOI | MR | Zbl
[41] Neufeld A., Nutz M., “Superreplication under volatility uncertainty for measurable claims”, Electronic Journal of Probability, 18:48 (2013), 1–14 | MR
[42] Mycielski J., Sẃierczkowski S., “On the Lebesgue measurability and the axiom of determinateness”, Fundamenta Mathematicae, 54:1 (1964), 67–71 | DOI | MR | Zbl
[43] Obloj J., Wiesel J., A unified Framework for Robust Modelling of Financial Markets in discrete time, 2018, arXiv: 1808.06430
[44] Smirnov S. N., “Thoughts on Financial Risk Modeling: the Role of Interpretation”, Intelligent Risk, 2:2 (2012), 12–15
[45] Rockafellar R. T., Convex Analysis, Princeton University Press, Princeton, 1970, 451 pp. | MR | Zbl
[46] Solovay R., “A model of set-theory in which every set of reals is Lebesgue measurable”, Ann. Math., 92:1 (1970), 1–56 | DOI | MR | Zbl
[47] Soner H. M., Touzi N., Zhang J., “Dual formulation of second order target problems”, Annals of Applied Probability, 23:1 (2013), 308–347 | DOI | MR | Zbl