Models of social and private interests combining with independed agents
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 10 (2018) no. 4, pp. 3-15.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to the investigation of models of social and private interests combining (SPICE-models) with equal independent agents. Existence and uniqueness of Nash and Pareto-optimal equilibria are proved. These equilibria are resource monotonous (RM), but not population monotonous (PM) and anonimous (ANO). The result about ability of system compatibility in the model is obtained.
Keywords: SPIC-models, social welfare, index of system compatibility, system compatability of model.
@article{MGTA_2018_10_4_a0,
     author = {Olga I. Gorbaneva},
     title = {Models of social and private interests combining with independed agents},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {3--15},
     publisher = {mathdoc},
     volume = {10},
     number = {4},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2018_10_4_a0/}
}
TY  - JOUR
AU  - Olga I. Gorbaneva
TI  - Models of social and private interests combining with independed agents
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2018
SP  - 3
EP  - 15
VL  - 10
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2018_10_4_a0/
LA  - ru
ID  - MGTA_2018_10_4_a0
ER  - 
%0 Journal Article
%A Olga I. Gorbaneva
%T Models of social and private interests combining with independed agents
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2018
%P 3-15
%V 10
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2018_10_4_a0/
%G ru
%F MGTA_2018_10_4_a0
Olga I. Gorbaneva. Models of social and private interests combining with independed agents. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 10 (2018) no. 4, pp. 3-15. http://geodesic.mathdoc.fr/item/MGTA_2018_10_4_a0/

[1] Burkov V. N., Kondratev V. V., Mekhanizmy funktsionirovaniya organizatsionnykh sistem, Nauka, M., 1981 | MR

[2] Germeier Yu. B., Vatel I. A., “Igry s ierarkhicheskim vektorom interesov”, Izvestiya Akademii nauk SSSR. Tekhnicheskaya kibernetika, 1974, no. 3, 54–69 | MR | Zbl

[3] Gorbaneva O. I., Ugolnitskii G. A., “Mekhanizmy soglasovaniya interesov v modeli raspredeleniya resursov”, Sistemy upravleniya i informatsionnye tekhnologii, 2014, no. 3.2(57), 225–232

[4] Gorbaneva O. I., Ugolnitskii G. A., “Modeli soglasovaniya obschestvennykh i chastnykh interesov v sistemakh interesov v sistemakh upravleniya”, XII vserossiiskoe soveschanie po problemam upravleniya VSPU-2014, Institut problem upravleniya im. V.A. Trapeznikova RAN, 2014, 5282–5289

[5] Gorbaneva O. I., Ugolnitskii G. A., “Modeli soglasovaniya obschikh i chastnykh interesov I: sistemnaya soglasovannost”, Ekonomika i menedzhment sistem upravleniya, 2017, no. 4.1(26), 194–200

[6] Gorbaneva O. I., Ugolnitskii G. A., “Tsena anarkhii i mekhanizmy upravleniya v modelyakh soglasovaniya obschestvennykh i chastnykh interesov”, Matematicheskaya teoriya igr i ee prilozheniya, 7:1 (2015), 50–73 | MR | Zbl

[7] Gorelik V. A., Gorelov M. A., Kononenko A. F., Analiz konfliktnykh situatsii v sistemakh upravleniya, Radio i svyaz, M., 1991 | MR

[8] Gorbaneva O. I., Ougolnitsky G. A., “Models of concordance of public and private interests in control systems”, Contributions to Game Theory and Management, 8 (2015), 47–57 | MR

[9] Gorbaneva O. I., Ougolnitsky G. A., “System compatibility, price of anarchy and control mechanisms in the models of concordance of private and public interests”, Advances in System Science and Applications, 15:1 (2015), 45–59 | MR

[10] Moulin H., Thomson W., “Can Everyone Benefit from Growth? Two Difficulties”, Journal of Mathematical Economics, 17 (1988), 339–345 | DOI | MR | Zbl

[11] Papadimitriou C. H., “Algorithms, games, and the Internet”, Proc. 33th Symposium Theory of Computing, 2001, 749–753 | MR | Zbl