Models of social and private interests combining with independed agents
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 10 (2018) no. 4, pp. 3-15

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to the investigation of models of social and private interests combining (SPICE-models) with equal independent agents. Existence and uniqueness of Nash and Pareto-optimal equilibria are proved. These equilibria are resource monotonous (RM), but not population monotonous (PM) and anonimous (ANO). The result about ability of system compatibility in the model is obtained.
Keywords: SPIC-models, social welfare, index of system compatibility, system compatability of model.
@article{MGTA_2018_10_4_a0,
     author = {Olga I. Gorbaneva},
     title = {Models of social and private interests combining with independed agents},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {3--15},
     publisher = {mathdoc},
     volume = {10},
     number = {4},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2018_10_4_a0/}
}
TY  - JOUR
AU  - Olga I. Gorbaneva
TI  - Models of social and private interests combining with independed agents
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2018
SP  - 3
EP  - 15
VL  - 10
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2018_10_4_a0/
LA  - ru
ID  - MGTA_2018_10_4_a0
ER  - 
%0 Journal Article
%A Olga I. Gorbaneva
%T Models of social and private interests combining with independed agents
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2018
%P 3-15
%V 10
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2018_10_4_a0/
%G ru
%F MGTA_2018_10_4_a0
Olga I. Gorbaneva. Models of social and private interests combining with independed agents. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 10 (2018) no. 4, pp. 3-15. http://geodesic.mathdoc.fr/item/MGTA_2018_10_4_a0/