Owen-stable coalition partitions in games with vector payoffs
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 10 (2018) no. 3, pp. 3-23.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to the study of multicriteria cooperative games with vector payoffs and coalition partition. The imputation which is based on the concept of the Owen value is proposed. We use it for the definition of stable coalition partition for bicriteria games. In three person cooperative game with 0-1 characteristic function the conditions under which the coalition partition is stable are found.
Keywords: Owen value, coalition partition stability, multicriteria cooperative game.
@article{MGTA_2018_10_3_a0,
     author = {Vasily V. Gusev and Vladimir V. Mazalov},
     title = {Owen-stable coalition partitions in games with vector payoffs},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {3--23},
     publisher = {mathdoc},
     volume = {10},
     number = {3},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2018_10_3_a0/}
}
TY  - JOUR
AU  - Vasily V. Gusev
AU  - Vladimir V. Mazalov
TI  - Owen-stable coalition partitions in games with vector payoffs
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2018
SP  - 3
EP  - 23
VL  - 10
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2018_10_3_a0/
LA  - ru
ID  - MGTA_2018_10_3_a0
ER  - 
%0 Journal Article
%A Vasily V. Gusev
%A Vladimir V. Mazalov
%T Owen-stable coalition partitions in games with vector payoffs
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2018
%P 3-23
%V 10
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2018_10_3_a0/
%G ru
%F MGTA_2018_10_3_a0
Vasily V. Gusev; Vladimir V. Mazalov. Owen-stable coalition partitions in games with vector payoffs. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 10 (2018) no. 3, pp. 3-23. http://geodesic.mathdoc.fr/item/MGTA_2018_10_3_a0/

[1] Gusev V. V., “Shapley, Owen and Aumann-Dreze values in a patrolling game with coalition structure”, Automation and Remote Control, 78:10 (2017), 1883–1891 | DOI | MR | Zbl

[2] Mazalov V., Mathematical game theory and applications, John Wiley Sons, 2014 | MR | Zbl

[3] Monroy L., Fernandez F. R., “Weighted multi-criteria simple games and voting systems”, Foundations of Computing and Decision Sciences, 32:4 (2007), 295–313 | MR | Zbl

[4] Fernandez F., Monroy L., “Multi-criteria simple games”, Multiobjective programming and goal programming: theoretical results and practical applications, 2009 | MR

[5] Patrone F., Pusillo L., Tijs S., “Multicriteria games and potentials”, Top, 15:1 (2007), 138–145 | DOI | MR | Zbl

[6] Pieri G., Pusillo L., “Multicriteria partial cooperative games”, Applied Mathematics, 6:12 (2015), 2125 | DOI

[7] Puerto J., Perea F., “On minimax and pareto optimal security payoffs in multicriteria games”, Journal of Mathematical Analysis and Applications, 457:2 (2018), 1634–1648 | DOI | MR | Zbl

[8] Rettieva A., “Dynamic Multicriteria Games with Finite Horizon”, Mathematics, 6:9 (2018), 156 | DOI

[9] Rettieva A., “Equilibria in dynamic multicriteria games”, International Game Theory Review, 19:01 (2017), 1750002 | DOI | MR | Zbl

[10] Sasaki Y., “Rationalizability in multicriteria games”, International Journal of Game Theory, 2018, 1–13

[11] Shapley L. S., Rigby F. D., “Equilibrium points in games with vector payoffs”, Naval Research Logistics Quarterly, 6:1 (1959), 57–61 | DOI | MR