Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MGTA_2018_10_3_a0, author = {Vasily V. Gusev and Vladimir V. Mazalov}, title = {Owen-stable coalition partitions in games with vector payoffs}, journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a}, pages = {3--23}, publisher = {mathdoc}, volume = {10}, number = {3}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MGTA_2018_10_3_a0/} }
TY - JOUR AU - Vasily V. Gusev AU - Vladimir V. Mazalov TI - Owen-stable coalition partitions in games with vector payoffs JO - Matematičeskaâ teoriâ igr i eë priloženiâ PY - 2018 SP - 3 EP - 23 VL - 10 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MGTA_2018_10_3_a0/ LA - ru ID - MGTA_2018_10_3_a0 ER -
Vasily V. Gusev; Vladimir V. Mazalov. Owen-stable coalition partitions in games with vector payoffs. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 10 (2018) no. 3, pp. 3-23. http://geodesic.mathdoc.fr/item/MGTA_2018_10_3_a0/
[1] Gusev V. V., “Shapley, Owen and Aumann-Dreze values in a patrolling game with coalition structure”, Automation and Remote Control, 78:10 (2017), 1883–1891 | DOI | MR | Zbl
[2] Mazalov V., Mathematical game theory and applications, John Wiley Sons, 2014 | MR | Zbl
[3] Monroy L., Fernandez F. R., “Weighted multi-criteria simple games and voting systems”, Foundations of Computing and Decision Sciences, 32:4 (2007), 295–313 | MR | Zbl
[4] Fernandez F., Monroy L., “Multi-criteria simple games”, Multiobjective programming and goal programming: theoretical results and practical applications, 2009 | MR
[5] Patrone F., Pusillo L., Tijs S., “Multicriteria games and potentials”, Top, 15:1 (2007), 138–145 | DOI | MR | Zbl
[6] Pieri G., Pusillo L., “Multicriteria partial cooperative games”, Applied Mathematics, 6:12 (2015), 2125 | DOI
[7] Puerto J., Perea F., “On minimax and pareto optimal security payoffs in multicriteria games”, Journal of Mathematical Analysis and Applications, 457:2 (2018), 1634–1648 | DOI | MR | Zbl
[8] Rettieva A., “Dynamic Multicriteria Games with Finite Horizon”, Mathematics, 6:9 (2018), 156 | DOI
[9] Rettieva A., “Equilibria in dynamic multicriteria games”, International Game Theory Review, 19:01 (2017), 1750002 | DOI | MR | Zbl
[10] Sasaki Y., “Rationalizability in multicriteria games”, International Journal of Game Theory, 2018, 1–13
[11] Shapley L. S., Rigby F. D., “Equilibrium points in games with vector payoffs”, Naval Research Logistics Quarterly, 6:1 (1959), 57–61 | DOI | MR