Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MGTA_2018_10_2_a3, author = {Anna V. Tur and Ekaterina V. Gromova}, title = {On the optimal control of pollution emissions for the largest enterprises of the {Irkutsk} region of the {Russian} {Federation}}, journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a}, pages = {62--89}, publisher = {mathdoc}, volume = {10}, number = {2}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MGTA_2018_10_2_a3/} }
TY - JOUR AU - Anna V. Tur AU - Ekaterina V. Gromova TI - On the optimal control of pollution emissions for the largest enterprises of the Irkutsk region of the Russian Federation JO - Matematičeskaâ teoriâ igr i eë priloženiâ PY - 2018 SP - 62 EP - 89 VL - 10 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MGTA_2018_10_2_a3/ LA - ru ID - MGTA_2018_10_2_a3 ER -
%0 Journal Article %A Anna V. Tur %A Ekaterina V. Gromova %T On the optimal control of pollution emissions for the largest enterprises of the Irkutsk region of the Russian Federation %J Matematičeskaâ teoriâ igr i eë priloženiâ %D 2018 %P 62-89 %V 10 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/MGTA_2018_10_2_a3/ %G ru %F MGTA_2018_10_2_a3
Anna V. Tur; Ekaterina V. Gromova. On the optimal control of pollution emissions for the largest enterprises of the Irkutsk region of the Russian Federation. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 10 (2018) no. 2, pp. 62-89. http://geodesic.mathdoc.fr/item/MGTA_2018_10_2_a3/
[1] Bagno A. L., Tarasev A. M., “Svoistva funktsii tseny v zadachakh optimalnogo upravleniya s beskonechnym gorizontom”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 26:1 (2016), 3–14
[2] Autom. Remote Control, 78:9 (2017), 1680–1692 | DOI | MR | Zbl
[3] Zakharov V. V., Petrosyan L. A., Matematicheskie modeli v ekologii, Izd-vo S.-Peterb. un-ta, SPb., 1996
[4] Kaverzina L. A., “Sostoyanie ekonomiki munitsipalnogo obrazovaniya g. Bratska v postkrizisnyi period”, Finansovaya analitika, 48:186 (2013), 24–34
[5] Kostyunin S. Yu., Palestini A., Shevkoplyas E. V., “Ob odnoi differentsialnoi igre, modeliruyuschei razrabotku nevozobnovlyaemogo resursa”, Vestn. S.-Peterburg. un-ta. Ser. 10. Prikl. matem. Inform. Prots. upr., 2013, no. 3, 73–82
[6] Mazalov V. V., Rettieva A. N., “Ravnovesie po Neshu v zadachakh okhrany okruzhayuschei sredy”, Matem. modelirovanie, 18:5 (2006), 73–90 | Zbl
[7] Petrosyan L. A., Murzov N. V., “Teoretiko-igrovye problemy v mekhanike”, Litovskii matematicheskii sbornik, VI:3 (1966), 423–433 | Zbl
[8] Petrosyan L. A., “Ustoichivost reshenii v differentsialnykh igrakh so mnogimi uchastnikami”, Vestnik Leningradskogo universiteta, 1977, no. 4, 46–52
[9] Petrosyan L. A., Danilov N. N., “Ustoichivye resheniya neantagonisticheskikh differentsialnykh igr s transferabelnymi vyigryshami”, Vestnik LGU, 1979, no. 1, 46–54
[10] Petrosyan L. A., Shevkoplyas E. V., “Kooperativnye differentsialnye igry so sluchainoi prodolzhitelnostyu”, Vestn. S.- Peterb. un-ta, Ser. 1: Matematika, mekhanika, astronomiya, 2000, no. 4, 18–23
[11] Rettieva A. N., “Kooperativnoe reguliruyuschee uslovie v zadache razdeleniya bioresursov”, UBS, 2009, no. 26.1, 366–384
[12] Shevkoplyas E. V., “Ustoichivaya kooperatsiya v differentsialnykh igrakh so sluchainoi prodolzhitelnostyu”, Matematicheskaya teoriya igr i ee prilozheniya, 2:3 (2012), 79–105 | Zbl
[13] Shevkoplyas E. V., “Uravnenie Gamiltona-Yakobi-Bellmana v differentsialnykh igrakh so sluchainoi prodolzhitelnostyu”, Matematicheskaya teoriya igr i ee prilozheniya, 1:2 (2009), 98–118
[14] Breton M., Zaccour G., Zahaf M., “A differential game of joint implementation of environmental projects”, Automatica, 41:10 (2005), 1737–1749 | DOI | MR | Zbl
[15] Dockner E. J., Van Long N., “International pollution control: Cooperative vs noncooperative strategies”, Journal Environmental Economics and Management, 25 (1993), 13–29 | DOI | Zbl
[16] Dockner E., Jorgensen S., Long N. V., Sorger G., Differential Games in Economics and Management Science, Cambridge University Press, Cambridge, 2000 | MR | Zbl
[17] Gromov D., Gromova E. V., “Differential games with random duration: a hybrid systems formulation”, Contributions to Game Theory and Management, 7 (2014), 104–119 | MR
[18] Gromov D., Gromova E., “On a Class of Hybrid Differential Games”, Dynamic Games and Applications, 7:2 (2017), 266–289 | DOI | MR
[19] Gromova E., Marova E., “On the characteristic function construction technique in differential games with prescribed and random duration”, Contributions to Game Theory and Management, XI (2018), 53–66
[20] Gromova E. V., Tur A. V., Balandina L. I., “A game-theoretic model of pollution control with asymmetric time horizons”, Contributions to Game Theory and Management, 9 (2016), 170–179 | MR
[21] Gromova E., Petrosyan L., “On an approach to constructing a characteristic function in cooperative differential games”, Autom. Remote Control, 78:9 (2017), 1680–1692 | DOI | MR
[22] Haurie A., Zaccour G., “Differential game models of global environmental management”, Annals of Dynamic Games, Boston, 1994, 124–132 | MR
[23] Kostyunin S., Palestini A., Shevkoplyas E. V., “On a nonrenewable resource extraction game played by asymmetric firms”, JOTA, 163 (2014), 660–673 | DOI | MR | Zbl
[24] Kostyunin S., Shevkoplyas E., “On simplification of integral payoff in differential games with random duration”, Vestnik S. Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 2011, no. 4, 47–56
[25] Marin-Solano J., Shevkoplyas E. V., “Non-constant discounting and differential games with random time horizon”, Automatica, 47:12 (2011), 2626–2638 | DOI | MR | Zbl
[26] Petrosjan L. A., Shevkoplyas E. V., “Cooperative Solutions for Games with Random Duration”, Game Theory and Applications, IX, Nova Science Publishers, 2003, 125–139 | MR
[27] Petrosjan L., Zaccour G., “Time-consistent Shapley value allocation of pollution cost reduction”, Journal of Economic Dynamics and Control, 27:3 (2003), 381–398 | DOI | MR | Zbl
[28] Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V., Mishenko E., Matematicheskaya teoriya optimal'nykh protsessov, Nauka, 1983 | MR | Zbl
[29] Shapley L. S., “A Value for n-person Games”, Contributions to the Theory of Games II, Annals of Mathematics Studies, 28, eds. H. W. Kuhn, A. W. Tucker, Princeton University Press, Princeton, 1953, 307–317 | MR
[30] Sedakov A., “Characteristic Functions in a Linear Oligopoly TU Game”, Frontiers of Dynamic Games. Static Dynamic Game Theory: Foundations Applications, eds. Petrosyan L., Mazalov V., Zenkevich N., Birkhauser, 2018, 219–235 | DOI | MR
[31] von Neumann J., Morgenstern O., Theory of Games and Economic Behavior, Princeton University Press, 1953 | MR | Zbl
[32] Weibull W., “A statistical distribution function of wide applicability”, J. Appl. Mech.-Trans. ASME, 18:3 (1951), 293–297 | Zbl
[33] Yaari M. E., “Uncertain Lifetime, Life Insurance, and the Theory of the Consumer”, The Review of Economic Studies, 32:2 (1965), 137–150 | DOI
[34] Bukhgalterskaya otchetnost OAO «RUSAL Bratsk», , 2011 https://braz-rusal.ru/
[35] Vikulova A. A., O nestandartnom zadanii kharakteristicheskoi funktsii v kooperativnykh igrakh, VKR
[36] Godovoi otchet otkrytogo aktsionernogo obschestva «Gruppa «Ilim» za 2011 g., http://www.ilimgroup.ru/aktsioneram/raskrytie-informatsii/godovji-otchet/
[37] Gosudarstvennyi doklad «O sostoyanii i ob okhrane okruzhayuschei sredy Irkutskoi oblasti v 2011 godu», http://irkobl.ru/sites/ecology/working/woter/aukzion/doklad2011.pdf
[38] Gosudarstvennyi doklad «O sostoyanii i ob okhrane okruzhayuschei sredy Rossiiskoi Federatsii v 2011 godu», http://www.mnr.gov.ru/docs/o_sostoyanii_i_ob_okhrane_okruzhayushchey_sredy_rossiyskoy_federatsii/130175/
[39] Reiting 400+100 krupneishikh kompanii Sibiri v 2016 godu, https://expert.ru/ratings/rejting-400_100-krupnejshih-kompanij-sibiri-v-2016-godu/