Bertrand--Nash equilibrium in the linear city model
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 10 (2018) no. 2, pp. 27-39.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper [1] explores the spatial duopoly of firms under Stackelberg competition, when one of the firms is the leader in terms of both volume of product and location. In this paper we consider the case of leadership only in terms of volume of product. Stackelberg–Nash equilibrium in the price and spatial strategies of firms are found. In the course of analysis of equilibrium stability, it is proved that the transport tariff is a bifurcation parameter for firms. It was found that the change in the central agglomeration strategy to the differentiation strategy occurs at the point of transcritical bifurcation. The conditions for full coverage of the markets for both strategies are defined. It is obtained that the Stackelberg information asymmetry leads to asymmetry of equilibrium locations of firms.
Keywords: linear city, agglomeration, differentiation, Stackelberg information asymmetry, transcritical bifurcation.
@article{MGTA_2018_10_2_a1,
     author = {Serhij V. Melnikov},
     title = {Bertrand--Nash equilibrium in the linear city model},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {27--39},
     publisher = {mathdoc},
     volume = {10},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2018_10_2_a1/}
}
TY  - JOUR
AU  - Serhij V. Melnikov
TI  - Bertrand--Nash equilibrium in the linear city model
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2018
SP  - 27
EP  - 39
VL  - 10
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2018_10_2_a1/
LA  - ru
ID  - MGTA_2018_10_2_a1
ER  - 
%0 Journal Article
%A Serhij V. Melnikov
%T Bertrand--Nash equilibrium in the linear city model
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2018
%P 27-39
%V 10
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2018_10_2_a1/
%G ru
%F MGTA_2018_10_2_a1
Serhij V. Melnikov. Bertrand--Nash equilibrium in the linear city model. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 10 (2018) no. 2, pp. 27-39. http://geodesic.mathdoc.fr/item/MGTA_2018_10_2_a1/

[1] Torbenko A., “Model lineinogo goroda s ekzogennoi konkurentsiei po Shtakelbergu”, Matematicheskaya teoriya igr i ee prilozheniya, 5:2 (2013), 64–81 | Zbl

[2] Anderson S., Neven D., “Cournot Competition Yields Spatial Agglomeration”, International Economic Review, 32:4 (1991), 793–808 | DOI | Zbl

[3] Bhadury J., Chandrasekaran R., Padmanabhan V., “Competitive Location and Entry Deterrence in Hotelling's Duopoly Model”, Location Science, 2:4 (1994), 259–275 | Zbl

[4] Brenner S., “Hotelling Games with Three, Four, and More Players”, Journal of Regional Science, 45:4 (2005), 851–864 | DOI

[5] D'Amato E., Mallozzi L., Pardalos P. M., “Sequential Entry in Hotelling Model with Location Costs: A Three-Firm Case”, Spatial Interaction Models: Facility Location Using Game Theory, Springer, 261–272, 2017 | MR | Zbl

[6] D'Aspremont C., Gabszewicz J., Thisse J.-F., “On Hotelling's "Stability in Competition"”, Econometrica, 47:5 (1979), 1145–1150 | DOI | MR | Zbl

[7] Economides N., “Minimal and Maximal Product Differentiation in Hotelling's Duopoly”, Econ. Letters, 21 (1986), 67–71 | DOI | MR | Zbl

[8] Gupta B., Pal D., Sarkar J., “Spatial Cournot competition and agglomeration in a model of location choice”, Regional Science and Urban Economics, 27:3 (1997), 261–282 | DOI | MR

[9] Hamilton J., Thisse J.-F., Weskamp A., “Spatial discrimination, Bertrand vs. Cournot in a model of location choice”, Regional Science and Urban Economics, 19 (1989), 87–102 | DOI | MR

[10] Hamilton J. H., Klein J. F., Sheshinski E., Slutsky S. M., “Quantity competition in a spatial model”, Canadian Journal of Economics, 27 (1994), 903–917 | DOI

[11] Hotelling H., “Stability in Competition”, The Economic Journal, 39:153 (1929), 41–57 | DOI

[12] Irmen A., Thisse J.-F., “Competition in Multi-Characteristics Spaces: Hotelling Was Almost Right”, Journal of Economic Theory, 78:1 (1998), 76–102 | DOI | MR | Zbl

[13] Mazalov V., Sakaguchi M., “Location Game on the Plane”, International Game Theory Review, 2003 | MR

[14] Neven D., “On Hotelling's competition with non-uniform consumer distribution”, Economics Letters, 21 (1986), 121–126 | DOI | MR | Zbl

[15] Prescott E. C., Visscher M., “Sequential location among firms with foresight”, The Bell Journal of Economics, 8 (1977), 378–393 | DOI