Applying cooperative game theory with coalitional structure for data clustering
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 10 (2018) no. 1, pp. 23-39.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the work a cooperative game where distance or similarity of players may be defined is considered. A characteristic function is defined in such a way that it is high for such coalitions which consist of more similar objects than objects from other coalitions. We consider the function which may not be superadditive that is why not only the grand coalition but smaller ones can be formed and considering a game with coalitional structure is reasonable. Therefore, we have a natural transformation from a cooperative game to a clustering problem. Several single-valued cooperative solution concepts are considered with this type of a characteristic function and stability conditions are found.
Mots-clés : coalition, stable coalitional structure
Keywords: clustering, Shapley value, Aumann-Dreze value, ES-value.
@article{MGTA_2018_10_1_a1,
     author = {Vladimir M. Bure and Kseniya Yu. Staroverova},
     title = {Applying cooperative game theory with coalitional structure for data  clustering},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {23--39},
     publisher = {mathdoc},
     volume = {10},
     number = {1},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2018_10_1_a1/}
}
TY  - JOUR
AU  - Vladimir M. Bure
AU  - Kseniya Yu. Staroverova
TI  - Applying cooperative game theory with coalitional structure for data  clustering
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2018
SP  - 23
EP  - 39
VL  - 10
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2018_10_1_a1/
LA  - ru
ID  - MGTA_2018_10_1_a1
ER  - 
%0 Journal Article
%A Vladimir M. Bure
%A Kseniya Yu. Staroverova
%T Applying cooperative game theory with coalitional structure for data  clustering
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2018
%P 23-39
%V 10
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2018_10_1_a1/
%G ru
%F MGTA_2018_10_1_a1
Vladimir M. Bure; Kseniya Yu. Staroverova. Applying cooperative game theory with coalitional structure for data  clustering. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 10 (2018) no. 1, pp. 23-39. http://geodesic.mathdoc.fr/item/MGTA_2018_10_1_a1/

[1] Ermolin N. A., Mazalov V. V., Pechnikov A. A., “Teoretiko-igrovye metody nakhozhdeniya soobschestv v akademicheskom Vebe”, Trudy SPIIRAN, 55 (2017), 237–254 | DOI

[2] Parilina E. M., Sedakov A. A., “Ustoichivost koalitsionnykh struktur odnoi modeli bankovskoi kooperatsii”, Matematicheskaya Teoriya Igr i ee Prilozheniya, 4:4 (2012), 45–62

[3] Afsar M., Energy-Efficient Coalition Formation in Sensor Networks: a Game-Theoretic Approach, Computing Research Repository, 2015, arXiv: 1512.08019 [cs.NI]

[4] Avrachenkov K. E., Kondratev A. Yu., Mazalov V. V., “Cooperative Game Theory Approaches for Network Partitioning”, International Computing and Combinatorics Conference, LNCS, 10392, 2017, 591–602 | MR | Zbl

[5] Garg V. K., Narahari Y., “Novel biobjective clustering (BiGC) based on cooperative game theory”, IEEE Transactions on Knowledge and Data Engineering, 25:5 (2013), 1070–1082 | DOI

[6] Dhamal S., Bhat S., Anoop K. R., Embar V. R., “Pattern Clustering using Cooperative Game Theory”, Proceedings of Centenary Conference, Computing Research Repository, 2012, 653–658, arXiv: 1201.0461 [cs.GT]

[7] Sedakov A., Parilina E., Volobuev Yu., Klimuk D., “Existence of Stable Coalition Structures in Three-person Games”, Contributions to Game Theory and Management, 6 (2013), 407–422 | MR