Evolutionary methods for solving dynamic resourse allocation problems
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 10 (2018) no. 1, pp. 5-22.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper proposes a dynamic game-theoretic statement of the problem of resource allocation in the organizational system. The application of algorithms of evolutionary modeling to the solution of such problems is considered. The exposition is illustrated by model examples.
Keywords: dynamic resource allocation problem, differential games, evolutionary modeling.
@article{MGTA_2018_10_1_a0,
     author = {Grigory I. Beliavsky and Natalia V. Danilova and Gennady A. Ougolnitsky},
     title = {Evolutionary methods for solving dynamic resourse allocation problems},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {5--22},
     publisher = {mathdoc},
     volume = {10},
     number = {1},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2018_10_1_a0/}
}
TY  - JOUR
AU  - Grigory I. Beliavsky
AU  - Natalia V. Danilova
AU  - Gennady A. Ougolnitsky
TI  - Evolutionary methods for solving dynamic resourse allocation problems
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2018
SP  - 5
EP  - 22
VL  - 10
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2018_10_1_a0/
LA  - ru
ID  - MGTA_2018_10_1_a0
ER  - 
%0 Journal Article
%A Grigory I. Beliavsky
%A Natalia V. Danilova
%A Gennady A. Ougolnitsky
%T Evolutionary methods for solving dynamic resourse allocation problems
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2018
%P 5-22
%V 10
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2018_10_1_a0/
%G ru
%F MGTA_2018_10_1_a0
Grigory I. Beliavsky; Natalia V. Danilova; Gennady A. Ougolnitsky. Evolutionary methods for solving dynamic resourse allocation problems. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 10 (2018) no. 1, pp. 5-22. http://geodesic.mathdoc.fr/item/MGTA_2018_10_1_a0/

[1] Belyavskii G. I., Lila V. B., Puchkov E. V., “Algoritm i programmnaya realizatsiya gibridnogo metoda obucheniya iskusstvennykh neironnykh setei”, Programmnye produkty i sistemy, 2012, no. 4, 96–101

[2] Belyavskii G. I., Danilova N. V., Ugolnitskii G. A., “Evolyutsionnoe modelirovanie v zadachakh upravleniya ustoichivym razvitiem aktivnykh sistem”, Matematicheskaya teoriya igr i ee prilozheniya, 8:4 (2016), 14–29

[3] Germeier Yu. B., Vatel I. A., “Igry s ierarkhicheskim vektorom interesov”, Izvestiya AN SSSR. Tekhnicheskaya kibernetika, 1974, no. 3, 54–69

[4] Gladkov L. A., Kureichik V. V., Kureichik V. M., Geneticheskie algoritmy, M., 2006

[5] Gorbaneva O. I., “Igrovye modeli raspredeleniya resursov v ierarkhicheskikh sistemakh upravleniya kachestvom rechnoi vody”, Matematicheskaya teoriya igr i ee prilozheniya, 2:1 (2010), 27–46

[6] Gorbaneva O. I., Ugolnitskii G. A., “Staticheskie modeli soglasovaniya obschestvennykh i chastnykh interesov pri raspredelenii resursov”, Matematicheskaya teoriya igr i ee prilozheniya, 8:2 (2016), 28–57

[7] Emelyanov V. V., Kureichik V. V., Kureichik V. M., Teoriya i praktika evolyutsionnogo modelirovaniya, M., 2003

[8] Kukushkin N. S., “O suschestvovanii ustoichivykh iskhodov v teoretiko-igrovoi modeli ekonomiki s obschestvennymi blagami”, Dokl. AN SSSR, 320:1 (1991), 25–28 | Zbl

[9] Novikov D. A., Teoriya upravleniya organizatsionnymi sistemami, M., 2007

[10] Pecherskii S. L., Yanovskaya E. B., Kooperativnye igry: resheniya i aksiomy, SPb, 2004

[11] Ugolnitskii G. A., Usov A. B., “Issledovanie differentsialnykh modelei ierarkhicheskikh sistem upravleniya putem ikh diskretizatsii”, Avtomat. i telemekhanika, 2013, no. 2, 109–122

[12] Bergstrom T., Blume C., Varian H., “On the private provision of public goods”, Journal of Public Economics, 29 (1986), 25–49 | DOI

[13] Boadway R., Pestiau P., Wildasin D., “Non-cooperative behavior and efficient provision of public goods”, Public Finance, 44 (1989), 1–7

[14] Boadway R., Pestiau P., Wildasin D., “Tax-transfer policies and the voluntary provision of public goods”, Journal of Public Economics, 39 (1989), 157–176 | DOI

[15] Christodoulou G., Sgouritza A., Tang B., “On the Efficiency of the Proportional Allocation Mechanism for Divisible Resources”, SAGT 2015, LNCS, 9347, ed. M. Hoefer, 165–177 | MR | Zbl

[16] Cornes R., Hartley R., “Asymmetric contests with general technologies”, Economic Theory, 26:4 (2005), 923–946 | DOI | MR | Zbl

[17] Cornes R., Sato T., “Existence and uniqueness of Nash equilibrium in aggregative games: an expository treatment”, Equilibrium Theory for Cournot Oligopolies and Related Games, eds. P. von Mouche, F. Quartieri, Springer International Publishing, 2016, 47–61 | DOI | MR

[18] Kahana N., Klunover D., “Private provision of a public good with a time-allocation choice”, Social Choice and Welfare, 2016, no. 7, 379–386 | DOI | MR | Zbl

[19] Kukushkin N. S., “A Condition for Existence of Nash Equilibrium in Games with Public and Private Objectives”, Games and Economic Behavior, 1994, no. 7, 177–192 | DOI | MR | Zbl

[20] Long N. V., A Survey of Dynamic Games in Economics, World Scientific Publishing Company, 2010 | MR

[21] Petrosjan L. A., Zenkevich N. A., Game Theory, Singapore–London–New-York, 2016