On the existence of IDP-core in cooperative differential games
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 9 (2017) no. 4, pp. 18-38.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we consider differential games with transferable utility and study of non-emptiness property of IDP-core presented in [7]. We apply methods of linear programming first applied in the paper [23] for analyzing non-emptiness of the Core. With described methods we construct necessary and sufficient conditions for IDP-core to be non-empty. This conditions are formalized for each time instant on which the game is defined and are imposed on a set of imputation distribution procedures (IDPs) corresponding to IDP-core.
Keywords: cooperative differential games, cooperative games, IDP-core, SC-core, linear programming.
@article{MGTA_2017_9_4_a1,
     author = {Dmitry A. Wolf and Victor V. Zakharov and Ovanes L. Petrosian},
     title = {On the existence of {IDP-core} in cooperative differential games},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {18--38},
     publisher = {mathdoc},
     volume = {9},
     number = {4},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2017_9_4_a1/}
}
TY  - JOUR
AU  - Dmitry A. Wolf
AU  - Victor V. Zakharov
AU  - Ovanes L. Petrosian
TI  - On the existence of IDP-core in cooperative differential games
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2017
SP  - 18
EP  - 38
VL  - 9
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2017_9_4_a1/
LA  - ru
ID  - MGTA_2017_9_4_a1
ER  - 
%0 Journal Article
%A Dmitry A. Wolf
%A Victor V. Zakharov
%A Ovanes L. Petrosian
%T On the existence of IDP-core in cooperative differential games
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2017
%P 18-38
%V 9
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2017_9_4_a1/
%G ru
%F MGTA_2017_9_4_a1
Dmitry A. Wolf; Victor V. Zakharov; Ovanes L. Petrosian. On the existence of IDP-core in cooperative differential games. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 9 (2017) no. 4, pp. 18-38. http://geodesic.mathdoc.fr/item/MGTA_2017_9_4_a1/

[1] Bondareva O. N., “Nekotorye primeneniya metodov lineinogo programmirovaniya k teorii kooperativnykh igr”, Problemy kibernetiki, no. 10, 1963, 119–140

[2] Vorobev N. N., Teoriya igr dlya ekonomistov-kibernetikov, Nauka, M., 1985 | MR

[3] Gromova E. V., Petrosyan L. A., “Silno dinamicheski ustoichivoe kooperativnoe reshenie v odnoi differentsialnoi igre upravleniya vrednymi vybrosami”, Upravlenie bolshimi sistemami, 55, 2015, 140–159

[4] Petrosyan L. A., “Ustoichivost reshenii v differentsialnykh igrakh so mnogimi uchastnikami”, Vestnik Leningradskogo universiteta. Seriya 1. Matematika, mekhanika, astronomiya, 1977, no. 4(19), 46–52

[5] Petrosyan L. A., “Silno dinamicheski ustoichivye differentsialnye printsipy optimalnosti”, Vestnik Leningradskogo universiteta. Seriya 1. Matematika, mekhanika, astronomiya, 1993, no. 4, 35–40

[6] Petrosyan L. A., Danilov N. N., “Ustoichivost reshenii neantagonisticheskikh differentsialnykh igr s transferabelnymi vyigryshami”, Vestnik Leningradskogo universiteta. Seriya 1. Matematika, mekhanika, astronomiya, 1979, no. 1, 52–79

[7] Petrosyan O. L., Gromova E. V., Pogozhev S. V., “O silno dinamicheski ustoichivom podmnozhestve C-yadra v kooperativnykh differentsialnykh igrakh s predpisannoi prodolzhitelnostyu”, MTIP, 8:4 (2016), 79–106

[8] Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V., Mischenko E. F., Matematicheskaya teoriya optimalnykh protsessov, Gos. izd-vo fiziko-matem. literatury, M., 1961 | MR

[9] Billera L. J., “Some theorems on the core of $n$ person game”, SIAM Journal of applied Mathematics, 18:3 (1970), 567–579 | DOI | MR

[10] Breton M., Zaccour G., Zahaf M., “A differential game of joint implementation of environmental projects”, Automatica, 41:10 (2005), 1737–1749 | DOI | MR

[11] Dockner E., Jorgensen S., van Long N., Sorger G., Differential Games in Economics and Management Science, Cambridge University Press, Cambridge, 2001 | MR

[12] Edgeworth F. Y., Mathematical physics, Kegan Paul, London, 1881

[13] Gillies D. B., Some theorems on $n$ person games, Ph.D. thesis, Department of Mathematics, Princeton University, 1953 | MR

[14] Gromova E., “The Shapley value as a sustainable cooperative solution in differential games of 3 players”, Recent Advances in Game Theory and Applications, 2016, 67–89 | DOI | MR

[15] Haurie A., “A note on nonzero-sum differential games with bargaining solutions”, Journal of Optimization Theory and Applications, 18:1 (1976), 31–39 | DOI | MR

[16] Haurie A., Zaccour G., “Differential Game Models of Global Environmental Management”, Control and Game-Theoretic Models of the Environment, 1995, 3–23 | DOI | MR

[17] Owen G., Game theory, Academic Press, New York, 1982 | MR

[18] Petrosyan L., Zaccour G., “Time-consistent Shapley value allocation of pollution cost reduction”, Journal of Economic Dynamics and Control, 27:3 (2003), 381–398 | DOI | MR

[19] Scarf H. E., “The core of an $n$ person game”, Economica, 35:1 (1967), 50–69 | MR

[20] Shapley L. S., “On balanced games without side payments”, Mathematical programming, Academic Press, New York, 1972, 261–290 | MR

[21] Shapley L. S., “On balanced sets and cores”, Naval Research Logistic Quarterly, 14 (1967), 453–460 | DOI

[22] Shapley L. S., “A Value for $n$-person Games”, Contributions to the Theory of Games, v. II, Annals of Mathematical Studies, 28, eds. H. W. Kuhn, A. W. Tucker, Princeton University Press, 1953, 307–317 | MR

[23] Zakharov V., O-Hun Kwon, “Linear programming approach in cooperative games”, J. Korean Math. Soc., 34:2 (1997), 423–435 | MR

[24] Zakharov V., Akimova A., “Nucleous as a selector of the subcore”, Proc. of 11th IFAC Workshop Control Applications of Optimization (St. Petersburg, Russia, July, 2000), IFAC Proceedings Volumes, 33, no. 16, 675–680 | DOI

[25] Zakharov V., Akimova A., “Geometric Properties of the Core, Subcore, Nucleolus”, Game Theory and Applications, VIII, Nova Science Publishers, 2002, 281–291 | MR