Multiple access game with imperfect information
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 9 (2017) no. 4, pp. 3-17

Voir la notice de l'article provenant de la source Math-Net.Ru

We propose a model of data transmission in the network of a special topology, in which two players (nodes of the network) tend to send as many randomly appeared data packages as they can through a common node. We assume that the player does not have complete information on the number of data packages of the other player for possible transfer to the destination node. To solve the game, we propose to use cooperative and noncooperative approaches, according to which the cooperative solution and Nash equilibrium are found. To compare the players' payoffs in the cooperative solution and the Nash equilibrium, the price of anarchy is calculated.
Mots-clés : data transmission
Keywords: multiple access, stochastic game, imperfect information.
@article{MGTA_2017_9_4_a0,
     author = {Vladimir M. Bure and Elena M. Parilina},
     title = {Multiple access game with imperfect information},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {3--17},
     publisher = {mathdoc},
     volume = {9},
     number = {4},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2017_9_4_a0/}
}
TY  - JOUR
AU  - Vladimir M. Bure
AU  - Elena M. Parilina
TI  - Multiple access game with imperfect information
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2017
SP  - 3
EP  - 17
VL  - 9
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2017_9_4_a0/
LA  - ru
ID  - MGTA_2017_9_4_a0
ER  - 
%0 Journal Article
%A Vladimir M. Bure
%A Elena M. Parilina
%T Multiple access game with imperfect information
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2017
%P 3-17
%V 9
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2017_9_4_a0/
%G ru
%F MGTA_2017_9_4_a0
Vladimir M. Bure; Elena M. Parilina. Multiple access game with imperfect information. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 9 (2017) no. 4, pp. 3-17. http://geodesic.mathdoc.fr/item/MGTA_2017_9_4_a0/