Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MGTA_2017_9_4_a0, author = {Vladimir M. Bure and Elena M. Parilina}, title = {Multiple access game with imperfect information}, journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a}, pages = {3--17}, publisher = {mathdoc}, volume = {9}, number = {4}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MGTA_2017_9_4_a0/} }
Vladimir M. Bure; Elena M. Parilina. Multiple access game with imperfect information. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 9 (2017) no. 4, pp. 3-17. http://geodesic.mathdoc.fr/item/MGTA_2017_9_4_a0/
[1] Bellman R., Dinamicheskoe programmirovanie, Izd-vo inostrannoi literatury, M., 1960
[2] Bure V. M., Parilina E. M., “Stokhasticheskie modeli peredachi dannykh v setyakh s razlichnymi topologiyami”, Upravlenie bolshimi sistemami, 68, 2017, 6–29
[3] Parilina E. M., “Kooperativnaya igra peredachi dannykh v besprovodnoi seti”, Matematicheskaya teoriya igr i ee prilozheniya, 1:4 (2009), 93–110
[4] Chirkova Yu. V., “Tsena anarkhii v igre balansa zagruzki sistemy obsluzhivaniya s tremya mashinami”, Matematicheskaya teoriya igr i ee prilozheniya, 6:4 (2014), 85–96
[5] Abramson N. M., “The aloha system: Another Alternative for Computer Communications”, Proceedings of the November 17–19, 1970, Fall Joint Computer Conference, AFIPS '70 (Fall), ACM, New York, NY, USA, 1970, 281–285
[6] Altman E., El Azouzi R., Jiménez T., “Slotted Aloha as a game with partial information”, Computer Networks, 45:6 (2004), 701–713 | DOI
[7] Bazenkov N. I., “Double best response dynamics in topology formation game for ad hoc networks”, Automation and Remote Control, 76:2 (2015), 323–335 | DOI | MR
[8] Buttyan L., Hubaux J.-P., Security and Cooperation in Wireless Networks: Thwarting Malicious and Selfish Behavior in the Age of Ubiquitous Computing, Cambridge University Press, New York, 2007
[9] Fink A. M., “Equilibrium in a stochastic $n$-person game”, Journal of Science of the Hiroshima University, A-I 28 (1964), 89–93 | MR
[10] Inaltekin H., Wicker S. B., “The Analysis of Nash Equilibria of the One-Shot Random-Access Game for Wireless Networks and the Behavior of Selfish Nodes”, IEEE/ACM Transactions on Networking, 16:5 (2008), 1094–1107 | DOI
[11] Koutsoupias E., Papadimitriou C., “Worst-case equilibria”, Proceedings of the 16th Annual Symposium on Theoretical Aspects of Computer Science, 1999, 404–413 | MR
[12] MacKenzie A. B., Wicker S. B., “Selfish users in Aloha: a game-theoretic approach”, IEEE 54th Vehicular Technology Conference. VTC Fall 2001, Proceedings (Atlantic City, NJ), v. 3, 2001, 1354–1357 | DOI
[13] Marbán S., van de Ven P., Borm P., Hamers H., “ALOHA networks: a game-theoretic approach”, Math Meth Oper Res., 78:2 (2013), 221–242 | DOI | MR
[14] Parilina E. M., Tampieri A., “Stability and cooperative solution in stochastic games”, Theory and Decision, 2017 (to appear) | DOI
[15] Petrosjan L. A., Baranova E. M., “Cooperative Stochastic Games in Stationary Strategies”, Game Theory and Applications, 11 (2006), 7–17 | MR
[16] Sagduyu Y. E., Ephremides A., “A game-theoretic look at simple relay channel”, Wireless Networks, 12:5 (2006), 545–560 | DOI
[17] Shapley L. S., “Stochastic games”, Proc. Natl. Acad. Sci. USA, 39 (1953), 1095–1100 | DOI | MR
[18] Takahashi M., “Stochastic games with infinitely many strategies”, Journal of Science of the Hiroshima University, A-I 28 (1964), 95–99 | MR