Typology of networks and equilibria in network gave with production and externalities of knowledges
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 9 (2017) no. 3, pp. 64-92.

Voir la notice de l'article provenant de la source Math-Net.Ru

The game equilibrium in network is under consideration, in each node of this network economy is described by the simple two-periods Romer model of endogenius growth with production and knowledge exernalities. The sum of knowledge levels in the neighbour nodes causes an externality in the production of each node of network. The notion of type of node enters; one gives a tipology of networks in depending on nodes’ types; is shown, that the inner game equilibria are defined by mentioned tipology. For various types of networks are found explicitly the equilibrium values of knowledges for nodes, which have a different position in the network.
Keywords: network, network structure, game in the network, Nash equilibrium, externality, forming of network.
@article{MGTA_2017_9_3_a2,
     author = {Vladimir D. Matveenko and Alexei V. Korolev},
     title = {Typology of networks and equilibria in network gave with production and externalities of knowledges},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {64--92},
     publisher = {mathdoc},
     volume = {9},
     number = {3},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2017_9_3_a2/}
}
TY  - JOUR
AU  - Vladimir D. Matveenko
AU  - Alexei V. Korolev
TI  - Typology of networks and equilibria in network gave with production and externalities of knowledges
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2017
SP  - 64
EP  - 92
VL  - 9
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2017_9_3_a2/
LA  - ru
ID  - MGTA_2017_9_3_a2
ER  - 
%0 Journal Article
%A Vladimir D. Matveenko
%A Alexei V. Korolev
%T Typology of networks and equilibria in network gave with production and externalities of knowledges
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2017
%P 64-92
%V 9
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2017_9_3_a2/
%G ru
%F MGTA_2017_9_3_a2
Vladimir D. Matveenko; Alexei V. Korolev. Typology of networks and equilibria in network gave with production and externalities of knowledges. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 9 (2017) no. 3, pp. 64-92. http://geodesic.mathdoc.fr/item/MGTA_2017_9_3_a2/

[1] Mazalov V. V., Matematicheskaya teoriya igr i prilozheniya, Lan, M., 2017

[2] Matveenko V. D., Korolev A. V., “Ravnovesiya Nesha v setevoi igre s proizvodstvom i eksternaliyami znanii”, Matematicheskaya teoriya igr i prilozheniya, 8:1 (2016), 106–137 | Zbl

[3] Novikov D. N., “Igry i seti”, Matematicheskaya teoriya igr i ee prilozheniya, 2:1 (2010), 107–124

[4] Petrosyan L. A., Zenkevich N. A., Shevkoplyas E. V., Teoriya igr, BKhV-Peterburg, SPb., 2012

[5] Bramoullé Y., Kranton R., “Public goods in networks”, Journal of Economic Theory, 135 (2007), 478–494 | DOI | MR | Zbl

[6] Galeotti A., Goyal S., Jackson M. O., Vega-Redondo F., Yariv L., “Network games”, Review of Economic Studies, 77 (2010), 218–244 | DOI | MR | Zbl

[7] Jackson M. O., Social and Economic Networks, Princeton University Press, 2008 | MR | Zbl

[8] Jackson M. O., Zenou Y., “Games on networks”, Handbook of game theory with economic applications, v. 4, eds. Young P., Zamir S., Elsevier Science, Amsterdam, 2015, 95–164 | DOI

[9] Martemyanov Y. P., Matveenko V. D., “On the dependence of the growth rate on the elasticity of substitution in a network”, International Journal of Process Management and Benchmarking, 4:4 (2014), 475–492 | DOI

[10] Nisan N., Roughgarden T., Tardos E., Vazirani V. V. (eds.), Algorithmic game theory, Cambridge University Press, New York, 2007 | MR | Zbl

[11] Romer P. M., “Increasing returns and long-run growth”, The Journal of Political Economy, 94 (1986), 1002–1037 | DOI