Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MGTA_2017_9_3_a0, author = {Victoria L. Kreps}, title = {Bidding models and repeated games with incomplete information: a survey}, journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a}, pages = {3--35}, publisher = {mathdoc}, volume = {9}, number = {3}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MGTA_2017_9_3_a0/} }
Victoria L. Kreps. Bidding models and repeated games with incomplete information: a survey. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 9 (2017) no. 3, pp. 3-35. http://geodesic.mathdoc.fr/item/MGTA_2017_9_3_a0/
[1] Vershik A. M. , “Metrika Kantorovicha: nachalnaya istoriya i maloizvestnye primeneniya”, Teoriya predstavlenii, dinamicheskie sistemy. XI, Zap. nauchn. sem. POMI, 312, 2004, 69–85
[2] Domanskii V. K., Kreps V. L., “Povtoryayuschiesya igry s asimmetrichnoi informatsiei i sluchainye bluzhdaniya tsen na finansovykh rynkakh”, Obozrenie prikl. i promyshl. matem., 12:4 (2005), 950–952
[3] Domanskii V. K., Kreps V. L., “Mnogoshagovye torgi aktsii v zakrytom aktsionernom obschestve i povtoryayuschiesya igry $n$ lits s nepolnoi informatsiei”, Ekonomicheskaya nauka sovremennoi Rossii, 2008, no. S1, 100–102
[4] Domanskii V. K., Kreps V. L., “Teoretiko-igrovaya model birzhevykh torgov: strategicheskie aspekty formirovaniya tsen na fondovykh rynkakh”, Zhurnal Novoi ekonomicheskoi assotsiatsii, 2011, no. 11, 39–62
[5] Domanskii V. K., Kreps V. L., “Igry torgov neskolkimi aktivami”, Matematicheskaya teoriya igr i ee prilozheniya, 6:3 (2014), 32–53 | Zbl
[6] Kreps V. L., “Povtoryayuschiesya igry, modeliruyuschie birzhevye torgi, i vozvratnye posledovatelnosti”, Izv. RAN, Teoriya i sistemy upravleniya, 2009, no. 4, 109–120
[7] Petrosyan L. A., Zenkevich N. A., Shevkoplyas E. V., Teoriya igr, Izd-vo «BKhV-Peterburg», 2012
[8] Pyanykh A., “Ob odnoi modifikatsii modeli birzhevykh torgov s insaiderom”, Matematicheskaya teoriya igr i ee prilozheniya, 6:4 (2014), 68–84 | Zbl
[9] Pyanykh A., “Mnogoshagovaya model birzhevykh torgov s elementami peregovorov i schetnym mnozhestvom sostoyanii”, Upravlenie bolshimi sistemami, 64 (2016), 6–26
[10] Pyanykh A., “O modifikatsii mnogoshagovoi modeli birzhevykh torgov s nepreryvnymi stavkami i asimmetrichnoi informatsiei”, Matematicheskaya teoriya igr i ee prilozheniya, 8:2 (2016), 91–113 | Zbl
[11] Sandomirskaya M. S., “Teoretiko-igrovaya dinamicheskaya model insaiderskikh torgov s nenulevym spredom”, Upravlenie bolshimi sistemami, 40 (2014), 207–234
[12] Sandomirskaya M. S., Domanskii V. K., “Reshenie odnoshagovoi igry birzhevykh torgov s nepolnoi informatsiei”, Matematicheskaya teoriya igr i ee prilozheniya, 4:1 (2012), 32–54 | Zbl
[13] Aumann R. J., Maschler M., Repeated Games with Incomplete Information, The MIT Press, Cambridge–Massachusetts–London, England, 1995 | MR
[14] Bachelier L., “Theorie de speculation”, Ann. Ecole Norm. Sup., 17 (1900), 21–86 | DOI | MR | Zbl
[15] Chatterjee K., Samuelson W., “Bargaining under Incomplete Information”, Operations Research, 31:5 (1983), 835–851 | DOI | Zbl
[16] De Meyer B., “Price dynamics on a stock market with asymmetric information”, Games and economic behavior, 69 (2010), 42–71 | DOI | MR | Zbl
[17] De Meyer B., Moussa Saley H., “On the Strategic Origin of Brownian Motion in Finance”, Int. Journal of Game Theory, 31 (2003), 285–319 | DOI | MR
[18] De Meyer B., Marino A., Continuous versus discrete market game, Cowles Foundation Discussion Paper No 1535, 2005
[19] Domansky V., “Repeated games with asymmetric information and random price fluctuations at finance markets”, Int. Journal of Game Theory, 36:2 (2007), 241–257 | DOI | MR | Zbl
[20] Domansky V., “Symmetric representations of bivariate distributions”, Statistics and Probability Letters, 83 (2013), 1054–1061 | DOI | MR | Zbl
[21] Domansky V., Kreps V., “Repeated games with asymmetric information modeling financial markets with two risky assets”, RAIRO Operations Research, 47 (2013), 251–272 | DOI | MR | Zbl
[22] Domansky V., Kreps V., Sandomirskaia M., “A Survey on Discrete Bidding Games with Asymmetric Information”, Contributions to Game Theory and Management, 6 (2013), 89–114 | MR
[23] Gensbittel F., Asymptotic analysis of repeated games with incomplete information, Thèse de doctorat de l'Université Paris 1, Panthéon-Sorbonne-Paris (10/12/2010), Bernard De Meyer (Dir), 2010 http://tel.archives-ouvertes.fr/tel-00579522/fr/
[24] Kyle A. S., “Continuous Auctions and Insider Trading”, Econometrica, 53 (1985), 1315–1335 | DOI | Zbl
[25] Sandomirskaia M., “Repeated Bidding Games with Incomplete Information and Bounded Values: On the Exponential Speed of Convergence”, Int. Game Theory Rev, 19:1 (2017) | DOI | MR | Zbl
[26] Sandomirskiy F., “On Repeated Zero-Sum Games with Incomplete Information and Asymptotically Bounded Values”, Dynamic Games and Applications 21 | DOI