Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MGTA_2017_9_2_a2, author = {Andrey V. Chernov}, title = {On some approaches to searching the {Nash} equilibrium in concave games}, journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a}, pages = {62--104}, publisher = {mathdoc}, volume = {9}, number = {2}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MGTA_2017_9_2_a2/} }
Andrey V. Chernov. On some approaches to searching the Nash equilibrium in concave games. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 9 (2017) no. 2, pp. 62-104. http://geodesic.mathdoc.fr/item/MGTA_2017_9_2_a2/
[1] Aleeva S. R., Yakubovich E. O., “Ravnovesnoe programmirovanie i ego primenenie dlya nakhozhdeniya ravnovesiya po Neshu”, Vestnik Chelyabinskogo gos. un-ta. Ser. Matematika. Mekhanika. Informatika, 28(319):16 (2013), 6–20
[2] Antipin A. S., Gradientnyi i ekstragradientnyi podkhody v bilineinom ravnovesnom programmirovanii, VTs im. A.A. Dorodnitsyna RAN, M., 2002
[3] Belenkii V. Z., Volkonskii V. A., Iterativnye metody v teorii igr i programmirovanii, Nauka, M., 1974
[4] Boldyrev V. I., “Metod kusochno-lineinoi approksimatsii dlya resheniya zadach optimalnogo upravleniya”, Differents. uravneniya i protsessy upravleniya, 2004, no. 1, 28–123
[5] Buzinov A. A., Metody otsechenii v lineinom optimalnom bystrodeistvii, Dis. \ldots kand. fiz.-mat. nauk, YarGU, Yaroslavl, 2000; Наука, М., 1985
[6] Vasin A. A., Morozov V. V., Teoriya igr i modeli matematicheskoi ekonomiki, MAKS Press, M., 2005
[7] Vasin A. A., Krasnoschekov P. S., Morozov V. V., Issledovanie operatsii, ITs «Akademiya», M., 2008
[8] Vorobev N. N., Teoriya igr dlya ekonomistov-kibernetikov, Nauka, M., 1985
[9] Goldshtein A. L., Optimizatsiya v srede MATLAB, Izd-vo PNIPU, Perm, 2015
[10] Evtushenko Yu. G., Metody resheniya ekstremalnykh zadach i ikh primenenie v sistemakh optimizatsii, Nauka, M., 1982
[11] Evtushenko Yu. G., Optimizatsiya i bystroe avtomaticheskoe differentsirovanie, VTs im. A. A. Dorodnitsyna RAN, M., 2013
[12] Elsakov S. M., Shiryaev V. I., “Odnorodnye algoritmy mnogoekstremalnoi optimizatsii dlya tselevykh funktsii so znachitelnym vremenem vychisleniya znacheniya”, Vychislitelnye metody i programmirovanie, 12 (2011), 48–69
[13] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz, Nauka, M., 1984
[14] Levin A. Yu., “Ob odnom algoritme minimizatsii vypuklykh funktsii”, Dokl. AN SSSR, 160:6 (1965), 1244–1247 | Zbl
[15] Minarchenko I. M., “Lokalnyi poisk v kvadratichnoi igre dvukh lits”, Izvestiya Irkutskogo gos. un-ta. Ser. Matem., 18 (2016), 60–73 | Zbl
[16] Nenakhov E. I., “Ob odnom algoritme otyskaniya reshenii sistemy lineinykh neravenstv”, Teoriya optimalnikh rishen, 2005, no. 4, 42–48
[17] Pisaruk N. N., Vvedenie v teoriyu igr, BGU, Minsk, 2015
[18] Piyavskii S. A., “Odin algoritm otyskaniya absolyutnogo ekstremuma funktsii”, Zhurnal vychisl. matem. i matem. fiz., 12:12 (1972), 57–67
[19] Posypkin M. A., “Parallelnyi evristicheskii algoritm globalnoi optimizatsii”, Trudy ISA RAN, 32 (2008), 166–179
[20] Sergeev Ya. D., Kvasov D. E., Diagonalnye metody globalnoi optimizatsii, Fizmatlit, M., 2008
[21] Strongin R. G., Chislennye metody v mnogoekstremalnykh zadachakh, Nauka, M., 1978
[22] Chernov A. V., “O suschestvovanii ravnovesiya po Neshu v differentsialnoi igre, svyazannoi s ellipticheskimi uravneniyami: monotonnyi sluchai”, Matem. teoriya igr i ee prilozheniya, 7:3 (2015), 48–78
[23] Chirkina D. N., “Obzor metoda relaksatsii dlya poiska tochek ravnovesiya po Neshu v nepreryvnykh nekooperativnykh igrakh mnogikh lits”, Materialy XVI Mezhdunarodnoi molodezhnoi konf. «Naukoemkie tekhnologii i intellektualnye sistemy–2014», Sektsiya 1: «Intellektualnye sistemy», MGTU im. N. E. Baumana, M., 2014, 37–40
[24] Shvedov I. A., Kompaktnyi kurs matematicheskogo analiza, v. 2, Differentsialnoe ischislenie funktsii mnogikh peremennykh, NGU, Novosibirsk, 2003
[25] Shor N. Z., Metody minimizatsii nedifferentsiruemykh funktsii i ikh prilozheniya, Naukova dumka, Kiev, 1979
[26] Başar T., “Relaxation techniques and asynchronous algorithms for online computation of non-cooperative equilibria”, J. of Economic Dynamics and Control, 11:4 (1987), 531–549 | DOI | MR | Zbl
[27] Dreves A., Facchinei F., Kanzow C., Sagratella S., “On the solution of the KKT conditions of generalized Nash equilibrium problems”, SIAM J. Optim., 21:3 (2011), 1082–1108 | DOI | MR | Zbl
[28] Facchinei F., Kanzow C., “Generalized Nash equilibrium problems”, Ann. Oper. Res., 175 (2010), 177–211 | DOI | MR | Zbl
[29] Facchinei F., Lampariello L., “Partial penalization for the solution of generalized Nash equilibrium problems”, J. Global Optim., 50:1 (2011), 39–57 | DOI | MR | Zbl
[30] Facchinei F., Pang J. S., Finite-dimensional variational inequalities and complementarity problems, Springer, New York, 2003 | MR
[31] Facchinei F., Pang J.-S., “Exact penalty functions for generalized Nash problems”, Large-Scale Nonlinear Optimization, Nonconvex Optimization and Its Applications, 83, 2006, 115–126 | DOI | MR | Zbl
[32] Fukushima M., “Restricted Generalized Nash Equilibria and Controlled Penalty Algorithm”, Computational Management Science, 8:3 (2011), 201–218 | DOI | MR | Zbl
[33] von Heusinger A., Kanzow C., “Methods for Generalized Nash Equilibrium Problems with Inexact Line Search”, J. Optim. Theory Appl., 2009, no. 143, 159–183 | MR | Zbl
[34] Izmailov A. F., Solodov M. V., “On error bounds and Newton-type methods for generalized Nash equilibrium problems”, Comput. Optim. Appl., 59:1–2 (2014), 201–218 | DOI | MR | Zbl
[35] Kanzow C., Steck D., “Augmented Lagrangian Methods for the Solution of Generalized Nash Equilibrium Problems”, SIAM J. Optim., 26:4 (2016), 2034–2058 | DOI | MR | Zbl
[36] Krawczyk J. B., Uryasev S., “Relaxation Algorithms to Find Nash Equilibria with Economic Applications”, Environmental Modeling and Assessment, 2000, no. 5, 63–73 | DOI
[37] Nikaido H., Isoda K., “Note on Noncooperative Convex Games”, Pacific J. of Mathematics, 5:5 (1955), 807–815 | DOI | MR
[38] Pang J. S., Fukushima M., “Quasi-variational inequalities, generalized Nash equilibria, and multi-leader-follower games”, Computational Management Science, 2:1 (2005), 21–56 | DOI | MR | Zbl
[39] Rosen J. B., “Existence and Uniqueness of Equilibrium Points for Concave $n$-Person Games”, Econometrica, 33:3 (1965), 520–534 | DOI | MR | Zbl
[40] Stoer J., Bulirsch R., Introduction to numerical analysis, Springer, New York, 2002 | MR | Zbl
[41] Uryas'ev S., Rubinstein R. Y., “On relaxation algorithms in computation of noncooperative equilibria”, IEEE Transactions on Automatic Control, 39:6 (1994), 1263–1267 | DOI | MR | Zbl
[42] Zhang L. P., Han J. Y., “Unconstrained optimization reformulations of equilibrium problems”, Acta Mathematica Sinica, English Series, 25:3 (2009), 343–354 | DOI | MR | Zbl