Positional voting methods satisfying the weak mutual majority and Condorcet loser principles
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 9 (2017) no. 2, pp. 3-38.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a voting problem, where the personal preferences of electors are defined by the ranked lists of the candidates. For the social choice functions we propose positional domination principles (WPD, PD), which is closely related to the scoring rules. Also we formulate a weak mutual majority principle (WMM), which is stronger than the majority principle, but weaker than the mutual majority principle (MM). We construct two modifications for the positional median rule, which satisfy the Condorcet loser principle. The WPD and WMM principles are shown to be fulfilled for the first modification, and the PD and MM principles for the second modification. We prove that there is no rule to satisfy both WPD and MM principles.
Keywords: positional voting method, social choice function, weak mutual majority, Condorcet loser principle, median rule
Mots-clés : positional domination.
@article{MGTA_2017_9_2_a0,
     author = {Aleksei Yu. Kondratyev},
     title = {Positional voting methods satisfying the weak mutual majority and {Condorcet} loser principles},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {3--38},
     publisher = {mathdoc},
     volume = {9},
     number = {2},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2017_9_2_a0/}
}
TY  - JOUR
AU  - Aleksei Yu. Kondratyev
TI  - Positional voting methods satisfying the weak mutual majority and Condorcet loser principles
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2017
SP  - 3
EP  - 38
VL  - 9
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2017_9_2_a0/
LA  - ru
ID  - MGTA_2017_9_2_a0
ER  - 
%0 Journal Article
%A Aleksei Yu. Kondratyev
%T Positional voting methods satisfying the weak mutual majority and Condorcet loser principles
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2017
%P 3-38
%V 9
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2017_9_2_a0/
%G ru
%F MGTA_2017_9_2_a0
Aleksei Yu. Kondratyev. Positional voting methods satisfying the weak mutual majority and Condorcet loser principles. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 9 (2017) no. 2, pp. 3-38. http://geodesic.mathdoc.fr/item/MGTA_2017_9_2_a0/

[1] Balinski M., Laraki R., Majority judgment: measuring, ranking, and electing, MIT press, 2011 | MR

[2] Black D. et al., The theory of committees and elections, Cambridge University Press, 1958 | Zbl

[3] Fishburn P. C., “Paradoxes of voting”, American Political Science Review, 68:2 (1974), 537–546 | DOI

[4] Gardenfors P., “Manipulation of social choice functions”, Journal of Economic Theory, 13:2 (1976), 217–228 | DOI | MR | Zbl

[5] Good I. J., “A note on Condorcet sets”, Public Choice, 10:1 (1971), 97–101 | DOI

[6] May K. O., “A set of independent necessary and sufficient conditions for simple majority decision”, Econometrica: Journal of the Econometric Society, 1952, 680–684 | DOI | MR | Zbl

[7] McLean I., Urken A. B., Classics of social choice, University of Michigan Press, 1995

[8] Pattanaik P. K., “Positional rules of collective decision-making”: Arrow K. J., Sen A. K., Suzumura K. (eds.), Handbook of Social Choice and Welfare, Elsevier Science, 2002 | MR

[9] Sanver M. R., Zwicker W. S., “Monotonicity properties and their adaptation to irresolute social choice rules”, Social Choice and Welfare, 39:2 (2012), 371–398 | DOI | MR | Zbl

[10] Schwartz T., “Rationality and the myth of the maximum”, Nous, 1972, 97–117 | DOI

[11] Smith J. H., “Aggregation of preferences with variable electorate”, Econometrica: Journal of the Econometric Society, 1973, 1027–1041 | DOI | MR | Zbl

[12] Tideman T. N., “Independence of clones as a criterion for voting rules”, Social Choice and Welfare, 4:3 (1987), 185–206 | DOI | MR | Zbl

[13] Tideman N., Collective decisions and voting: the potential for public choice, Ashgate Publishing, Ltd., 2006

[14] Woodall D. R., “Monotonicity of single-seat preferential election rules”, Discrete Applied Mathematics, 77:1 (1997), 81–98 | DOI | MR | Zbl

[15] Young H. P., “Social choice scoring functions”, SIAM Journal on Applied Mathematics, 28:4 (1975), 824–838 | DOI | MR | Zbl

[16] Zwicker W., “Introduction to the theory of voting”: Brandt F., Conitzer V., Endriss U., Lang J., Procaccia A. (eds.), Handbook of Computational Social Choice, Cambridge University Press, 2016