Linear-quadratic discrete-time dynamic potential games
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 9 (2017) no. 1, pp. 95-107

Voir la notice de l'article provenant de la source Math-Net.Ru

Discrete-time game-theoretic models of resource exploitation are treated as dynamic potential games. The players (countries or firms) exploit a common stock on the infinite time horizon. The main aim of the paper is to obtain a potential for the linear-quadratic games of this type. The class of games where a potential can be constructed as a quadratic form is identified. As an example, the dynamic game of bioresource management is considered and the potentials are constructed in the case of symmetric and asymmetric players.
Keywords: dynamic game, potential, bioresource management problem.
@article{MGTA_2017_9_1_a4,
     author = {Vladimir V. Mazalov and Anna N. Rettieva and Konstantin E. Avrachenkov},
     title = {Linear-quadratic discrete-time dynamic potential games},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {95--107},
     publisher = {mathdoc},
     volume = {9},
     number = {1},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2017_9_1_a4/}
}
TY  - JOUR
AU  - Vladimir V. Mazalov
AU  - Anna N. Rettieva
AU  - Konstantin E. Avrachenkov
TI  - Linear-quadratic discrete-time dynamic potential games
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2017
SP  - 95
EP  - 107
VL  - 9
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2017_9_1_a4/
LA  - ru
ID  - MGTA_2017_9_1_a4
ER  - 
%0 Journal Article
%A Vladimir V. Mazalov
%A Anna N. Rettieva
%A Konstantin E. Avrachenkov
%T Linear-quadratic discrete-time dynamic potential games
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2017
%P 95-107
%V 9
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2017_9_1_a4/
%G ru
%F MGTA_2017_9_1_a4
Vladimir V. Mazalov; Anna N. Rettieva; Konstantin E. Avrachenkov. Linear-quadratic discrete-time dynamic potential games. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 9 (2017) no. 1, pp. 95-107. http://geodesic.mathdoc.fr/item/MGTA_2017_9_1_a4/