Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MGTA_2017_9_1_a4, author = {Vladimir V. Mazalov and Anna N. Rettieva and Konstantin E. Avrachenkov}, title = {Linear-quadratic discrete-time dynamic potential games}, journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a}, pages = {95--107}, publisher = {mathdoc}, volume = {9}, number = {1}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MGTA_2017_9_1_a4/} }
TY - JOUR AU - Vladimir V. Mazalov AU - Anna N. Rettieva AU - Konstantin E. Avrachenkov TI - Linear-quadratic discrete-time dynamic potential games JO - Matematičeskaâ teoriâ igr i eë priloženiâ PY - 2017 SP - 95 EP - 107 VL - 9 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MGTA_2017_9_1_a4/ LA - ru ID - MGTA_2017_9_1_a4 ER -
%0 Journal Article %A Vladimir V. Mazalov %A Anna N. Rettieva %A Konstantin E. Avrachenkov %T Linear-quadratic discrete-time dynamic potential games %J Matematičeskaâ teoriâ igr i eë priloženiâ %D 2017 %P 95-107 %V 9 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/MGTA_2017_9_1_a4/ %G ru %F MGTA_2017_9_1_a4
Vladimir V. Mazalov; Anna N. Rettieva; Konstantin E. Avrachenkov. Linear-quadratic discrete-time dynamic potential games. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 9 (2017) no. 1, pp. 95-107. http://geodesic.mathdoc.fr/item/MGTA_2017_9_1_a4/
[1] Rettieva A. N., “Diskretnaya zadacha upravleniya bioresursami s asimmetrichnymi igrokami”, Matematicheskaya teoriya igr i ee prilozheniya, 4:4 (2012), 63–72
[2] Basar T., Olsder G. J., Dynamic noncooperative game theory, Academic Press, NY, 1982 | MR | Zbl
[3] Dechert W. D., “Optimal control problems from second order difference equations”, J. Econ. Theory, 19 (1978), 50–63 | DOI | MR | Zbl
[4] Dechert W. D., Noncooperative dynamic games: a control theoretic approach, University of Houston, 1997
[5] Dragone D., Lambertini L., Leitmann G., Palestini A., “Hamilton potential functions for differential games”, Proceeding of IFAC CAO (2009), v. 9
[6] Gonzalez-Sanchez D., Hernandez-Lerma O., “Dynamic potential games: The discrete-time stochastic case”, Dynamic Games and Applications, 4:3 (2014), 309–328 | DOI | MR | Zbl
[7] Gonzalez-Sanchez D., Hernandez-Lerma O., Discrete-time stochastic control and dynamic potential games: the Euler-Equation approach, Springer Science Business Media, 2013 | MR | Zbl
[8] Monderer D., Shapley L. S., “Potential games”, Games and Economic Behavior, 14 (1996), 124–143 | DOI | MR | Zbl
[9] Zazo S., Macua S. V., Sanchez-Fernandes M., Zazo J., “Dynamic potential games with constraints: fundamentals and applications in communications”, IEEE Transactions on Signal Processing, 64:14 (2015) | MR