Berge and Nash equilibrium in a linear-quadratic differential game
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 9 (2017) no. 1, pp. 62-94.

Voir la notice de l'article provenant de la source Math-Net.Ru

Everyone who was concerned with the theory of stability in Liapunov`s sense can keep in mind the section: coefficient criteria of stability. The idea is in fact that without solving the differential equations and considering signs of coefficients and (or) relations among them one can judge at once about stability of nonperturbed motion. In this article we tried to apply the same approach but now with a view to choose the conceptions of equilibrium in the class of non-cooperation differential linear-quadratic games of two persons. We can answer two questions: first, are there situations of Berge equilibrium and (or) Nash equilibrium?; secondly, how we can finf them? Actually the answers «are hiding» (considering the method of dynamic programming) in possibility to judge about the existence of extendable on time interval game solution of system from two ordinary matrix differential equations Riccaty type. To answer this problem positively we had to attract the method of small parameter and theorem of Poincare on analyticity of parameter solution.
Keywords: non-cooperation differential linear-quadratic positional game, Berge and Nash equilibrium, dynamic programming, small parameter method.
@article{MGTA_2017_9_1_a3,
     author = {Vladislav I. Zhukovskiy and Anton S. Gorbatov and Konstantin N. Kudryavtsev},
     title = {Berge and {Nash} equilibrium in a linear-quadratic differential game},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {62--94},
     publisher = {mathdoc},
     volume = {9},
     number = {1},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2017_9_1_a3/}
}
TY  - JOUR
AU  - Vladislav I. Zhukovskiy
AU  - Anton S. Gorbatov
AU  - Konstantin N. Kudryavtsev
TI  - Berge and Nash equilibrium in a linear-quadratic differential game
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2017
SP  - 62
EP  - 94
VL  - 9
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2017_9_1_a3/
LA  - ru
ID  - MGTA_2017_9_1_a3
ER  - 
%0 Journal Article
%A Vladislav I. Zhukovskiy
%A Anton S. Gorbatov
%A Konstantin N. Kudryavtsev
%T Berge and Nash equilibrium in a linear-quadratic differential game
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2017
%P 62-94
%V 9
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2017_9_1_a3/
%G ru
%F MGTA_2017_9_1_a3
Vladislav I. Zhukovskiy; Anton S. Gorbatov; Konstantin N. Kudryavtsev. Berge and Nash equilibrium in a linear-quadratic differential game. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 9 (2017) no. 1, pp. 62-94. http://geodesic.mathdoc.fr/item/MGTA_2017_9_1_a3/

[1] Vaisman K. S., “Ravnovesie po Berzhu v odnoi differentsialnoi igre”, Slozhnye dinamicheskie sistemy, Sb. nauchn. tr., Pskovskii pedinstitut, Pskov, 1994, 58–63

[2] Vaisman K. S., “Ravnovesie po Berzhu”: V. I. Zhukovskii, A. A. Chikrii, Lineino-kvadratichnye differentsialnye igry, Naukova Dumka, Kiev, 1994, 119–143

[3] Vaisman K. S., “Suschestvovanie garantirovannogo ravnovesiya po Berzhu v odnoi differentsialnoi igre”, Tezisy dokladov VMSh «Pontryaginskie chteniya-VI» (Voronezh, 1995), 19

[4] Vaisman K. S., Ravnovesie po Berzhu, Avtoreferat diss. ... kand. fiz.-mat. nauk, Sankt-Peterburgskii un-t, 1995

[5] Vaisman K. S., “Ob odnom reshenii strogo vypukloi beskoalitsionnoi igry”, Slozhnye upravlyaemye sistemy, Mezhvuz. sb. nauch. tr., RosZITLP, M., 1996, 13–15

[6] Vaisman K. S., “Arbitrazhnaya skhema Nesha pri neopredelennosti”: V. I. Zhukovskii, Kooperativnye igry pri neopredelennosti i ikh primenenie, Izd. 2, Editorial URSS, M., 2010, 213–249

[7] Vaisman K. S., Aimukhanov N. Zh., “Ravnovesie po Berzhu v differentsialno-raznostnoi igre”, Slozhnye upravlyaemye sistemy, Mezhvuz. sb. nauch. tr., RosZITLP, M., 1996, 90–93

[8] Vaisman K. S., Zhukovskii V. I., “Svoistva ravnovesiya po Berzhu”, Tezisy dokladov V shkoly «Matematicheskie problemy ekologii» (Chita, 1994), 27–28

[9] Vaisman K. S., Zhukovskii V. I., “Struktura ravnovesnykh po Berzhu reshenii”, Tezisy dokladov VMSh «Pontryaginskie chteniya-V» (Voronezh, 1994), 29

[10] Voevodin V. V., Kuznetsov Yu. A., Matritsy i vychisleniya, Nauka, M., 1984

[11] Guseinov A. A., Zhukovskii V. I., Kudryavtsev K. N., Matematicheskie osnovy Zolotogo pravila nravstvennosti: Teoriya novogo altruisticheskogo uravnoveshivaniya konfliktov v protivopolozhnost «egoisticheskomu» ravnovesiyu po Neshu, URSS, M., 2016

[12] Zhitomirskii G. I., Vaisman K. S., “O ravnovesii po Berzhu”, Slozhnye dinamicheskie sistemy, Sb. nauchn. tr., Pskovskii pedinstitut, Pskov, 1994, 52–57

[13] Zhukovskii V. I., Vvedenie v differentsialnye igry pri neopredelennosti. Ravnovesie po Berzhu–Vaismanu, URSS, M., 2010

[14] Zhukovskii V. I., Kudryavtsev K. N., “Matematicheskie osnovy Zolotogo pravila nravstvennosti. I. Staticheskii variant”, Matematicheskaya teoriya igr i prilozheniya, 7:3 (2015), 16–47

[15] Zhukovskii V. I., Smirnova L. V., Gorbatov A. S., “Matematicheskie osnovy Zolotogo pravila nravstvennosti. II. Dinamicheskii variant”, Matematicheskaya teoriya igr i prilozheniya, 8:1 (2016), 27–62

[16] Zhukovskii V. I., Chikrii A. A., Lineino-kvadratichnye differentsialnye igry, Naukova Dumka, Kiev, 1994

[17] Matematicheskaya entsiklopediya, v. Z, Sovetskaya entsiklopediya, M., 1982, 498 pp.

[18] Berge C., Théorie générale des jeux a n-personnes, Gauthier Villars, Paris, 1957 | MR

[19] Larbani M., Zhukovskiy V. I., “Berge-Equilibrium in Normal Form Games: a literature review”, International Game theory review (to appear) , 43 pp. | MR

[20] Nash J. F., “Non-Cooperative Games”, Ann. Math., 54 (1951), 286–295 | DOI | MR | Zbl

[21] Shubik M., “Review: The General Theory of n-Person Games by Claude Berge”, Econometrica, 29:4 (1961), 821 | DOI

[22] Vaisman K. S., “The Berge Equilibrium for Linear-Quadratic Differential Game”, Abstracts of the third International Workshop «Multiple criteria problems under uncertainty» (1994, Orekhovo-Zuevo, Russia), 96

[23] Vaisman K. S., “About differential game under uncertainty”, Abstracts of the third International Workshop «Nonsmooth and Discontinuous Problems of Control and Optimization» (St.-Petersburg, 1995), 45–48

[24] Vaisman K. S., “Nash equilibria routing and ring Networks”, Game Theory and Application III, 1997, 147–160

[25] Vaisman K. S., Zhukovskiy V. I., “The Berge Equilibrium under Uncertainty, Multiple Criteria Problems under Uncertainty”, Abstracts of The 3-d International Workshop (Orekhovo-Zuevo, Russia, 1994), 97–98 | MR

[26] Zhukovskiy V. I., Molostvov V. S., Vaisman K. S., “Non-Cooperative Games under Uncertainty”, Game Theory and Application III, 1997, 189–222 | MR | Zbl

[27] Zhukovskiy V. I., Salukvadze M. E., Vaisman K. S., The Berge Equilibrium, Preprint, Institute of Control Systems, Tbilisi, Georgia, 1994 | MR

[28] Zhukovskiy V. I., Vaisman K. S., “About one solution in noncooperative games”, The Theory and Economics, N. N. Vorob'ev Memorial Conference (St.-Petersburg, 1996), 77

[29] Zhukovskiy V. I., Vaisman K. S., “To a Problem about Berge Equilibrium”, Vestnik Pskovskogo Volnogo un-ta. Matematika i informatika, 1997, no. 1, 49–70