Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MGTA_2017_9_1_a3, author = {Vladislav I. Zhukovskiy and Anton S. Gorbatov and Konstantin N. Kudryavtsev}, title = {Berge and {Nash} equilibrium in a linear-quadratic differential game}, journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a}, pages = {62--94}, publisher = {mathdoc}, volume = {9}, number = {1}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MGTA_2017_9_1_a3/} }
TY - JOUR AU - Vladislav I. Zhukovskiy AU - Anton S. Gorbatov AU - Konstantin N. Kudryavtsev TI - Berge and Nash equilibrium in a linear-quadratic differential game JO - Matematičeskaâ teoriâ igr i eë priloženiâ PY - 2017 SP - 62 EP - 94 VL - 9 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MGTA_2017_9_1_a3/ LA - ru ID - MGTA_2017_9_1_a3 ER -
%0 Journal Article %A Vladislav I. Zhukovskiy %A Anton S. Gorbatov %A Konstantin N. Kudryavtsev %T Berge and Nash equilibrium in a linear-quadratic differential game %J Matematičeskaâ teoriâ igr i eë priloženiâ %D 2017 %P 62-94 %V 9 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/MGTA_2017_9_1_a3/ %G ru %F MGTA_2017_9_1_a3
Vladislav I. Zhukovskiy; Anton S. Gorbatov; Konstantin N. Kudryavtsev. Berge and Nash equilibrium in a linear-quadratic differential game. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 9 (2017) no. 1, pp. 62-94. http://geodesic.mathdoc.fr/item/MGTA_2017_9_1_a3/
[1] Vaisman K. S., “Ravnovesie po Berzhu v odnoi differentsialnoi igre”, Slozhnye dinamicheskie sistemy, Sb. nauchn. tr., Pskovskii pedinstitut, Pskov, 1994, 58–63
[2] Vaisman K. S., “Ravnovesie po Berzhu”: V. I. Zhukovskii, A. A. Chikrii, Lineino-kvadratichnye differentsialnye igry, Naukova Dumka, Kiev, 1994, 119–143
[3] Vaisman K. S., “Suschestvovanie garantirovannogo ravnovesiya po Berzhu v odnoi differentsialnoi igre”, Tezisy dokladov VMSh «Pontryaginskie chteniya-VI» (Voronezh, 1995), 19
[4] Vaisman K. S., Ravnovesie po Berzhu, Avtoreferat diss. ... kand. fiz.-mat. nauk, Sankt-Peterburgskii un-t, 1995
[5] Vaisman K. S., “Ob odnom reshenii strogo vypukloi beskoalitsionnoi igry”, Slozhnye upravlyaemye sistemy, Mezhvuz. sb. nauch. tr., RosZITLP, M., 1996, 13–15
[6] Vaisman K. S., “Arbitrazhnaya skhema Nesha pri neopredelennosti”: V. I. Zhukovskii, Kooperativnye igry pri neopredelennosti i ikh primenenie, Izd. 2, Editorial URSS, M., 2010, 213–249
[7] Vaisman K. S., Aimukhanov N. Zh., “Ravnovesie po Berzhu v differentsialno-raznostnoi igre”, Slozhnye upravlyaemye sistemy, Mezhvuz. sb. nauch. tr., RosZITLP, M., 1996, 90–93
[8] Vaisman K. S., Zhukovskii V. I., “Svoistva ravnovesiya po Berzhu”, Tezisy dokladov V shkoly «Matematicheskie problemy ekologii» (Chita, 1994), 27–28
[9] Vaisman K. S., Zhukovskii V. I., “Struktura ravnovesnykh po Berzhu reshenii”, Tezisy dokladov VMSh «Pontryaginskie chteniya-V» (Voronezh, 1994), 29
[10] Voevodin V. V., Kuznetsov Yu. A., Matritsy i vychisleniya, Nauka, M., 1984
[11] Guseinov A. A., Zhukovskii V. I., Kudryavtsev K. N., Matematicheskie osnovy Zolotogo pravila nravstvennosti: Teoriya novogo altruisticheskogo uravnoveshivaniya konfliktov v protivopolozhnost «egoisticheskomu» ravnovesiyu po Neshu, URSS, M., 2016
[12] Zhitomirskii G. I., Vaisman K. S., “O ravnovesii po Berzhu”, Slozhnye dinamicheskie sistemy, Sb. nauchn. tr., Pskovskii pedinstitut, Pskov, 1994, 52–57
[13] Zhukovskii V. I., Vvedenie v differentsialnye igry pri neopredelennosti. Ravnovesie po Berzhu–Vaismanu, URSS, M., 2010
[14] Zhukovskii V. I., Kudryavtsev K. N., “Matematicheskie osnovy Zolotogo pravila nravstvennosti. I. Staticheskii variant”, Matematicheskaya teoriya igr i prilozheniya, 7:3 (2015), 16–47
[15] Zhukovskii V. I., Smirnova L. V., Gorbatov A. S., “Matematicheskie osnovy Zolotogo pravila nravstvennosti. II. Dinamicheskii variant”, Matematicheskaya teoriya igr i prilozheniya, 8:1 (2016), 27–62
[16] Zhukovskii V. I., Chikrii A. A., Lineino-kvadratichnye differentsialnye igry, Naukova Dumka, Kiev, 1994
[17] Matematicheskaya entsiklopediya, v. Z, Sovetskaya entsiklopediya, M., 1982, 498 pp.
[18] Berge C., Théorie générale des jeux a n-personnes, Gauthier Villars, Paris, 1957 | MR
[19] Larbani M., Zhukovskiy V. I., “Berge-Equilibrium in Normal Form Games: a literature review”, International Game theory review (to appear) , 43 pp. | MR
[20] Nash J. F., “Non-Cooperative Games”, Ann. Math., 54 (1951), 286–295 | DOI | MR | Zbl
[21] Shubik M., “Review: The General Theory of n-Person Games by Claude Berge”, Econometrica, 29:4 (1961), 821 | DOI
[22] Vaisman K. S., “The Berge Equilibrium for Linear-Quadratic Differential Game”, Abstracts of the third International Workshop «Multiple criteria problems under uncertainty» (1994, Orekhovo-Zuevo, Russia), 96
[23] Vaisman K. S., “About differential game under uncertainty”, Abstracts of the third International Workshop «Nonsmooth and Discontinuous Problems of Control and Optimization» (St.-Petersburg, 1995), 45–48
[24] Vaisman K. S., “Nash equilibria routing and ring Networks”, Game Theory and Application III, 1997, 147–160
[25] Vaisman K. S., Zhukovskiy V. I., “The Berge Equilibrium under Uncertainty, Multiple Criteria Problems under Uncertainty”, Abstracts of The 3-d International Workshop (Orekhovo-Zuevo, Russia, 1994), 97–98 | MR
[26] Zhukovskiy V. I., Molostvov V. S., Vaisman K. S., “Non-Cooperative Games under Uncertainty”, Game Theory and Application III, 1997, 189–222 | MR | Zbl
[27] Zhukovskiy V. I., Salukvadze M. E., Vaisman K. S., The Berge Equilibrium, Preprint, Institute of Control Systems, Tbilisi, Georgia, 1994 | MR
[28] Zhukovskiy V. I., Vaisman K. S., “About one solution in noncooperative games”, The Theory and Economics, N. N. Vorob'ev Memorial Conference (St.-Petersburg, 1996), 77
[29] Zhukovskiy V. I., Vaisman K. S., “To a Problem about Berge Equilibrium”, Vestnik Pskovskogo Volnogo un-ta. Matematika i informatika, 1997, no. 1, 49–70