Game-teoretic model of agreement on limitation of transboundary atmospheric pollution
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 9 (2017) no. 1, pp. 27-44.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article we consider a model of the agreements in the problem of transboundary atmospheric pollution by emissions of industrial production. Interaction of countries is described as a repeated game with side payments. The aim of this work is to find the conditions for existence of a subgame perfect equilibrium realizing Pareto-optimal situation in each period of the game.
Keywords: repeated game, Nash equilibrium
Mots-clés : subgame perfect equilibrium, Pareto-optimal situation.
@article{MGTA_2017_9_1_a1,
     author = {Alexandr A. Vasin and Anastasiya G. Divtsova},
     title = {Game-teoretic model of agreement on limitation of transboundary atmospheric pollution},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {27--44},
     publisher = {mathdoc},
     volume = {9},
     number = {1},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2017_9_1_a1/}
}
TY  - JOUR
AU  - Alexandr A. Vasin
AU  - Anastasiya G. Divtsova
TI  - Game-teoretic model of agreement on limitation of transboundary atmospheric pollution
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2017
SP  - 27
EP  - 44
VL  - 9
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2017_9_1_a1/
LA  - ru
ID  - MGTA_2017_9_1_a1
ER  - 
%0 Journal Article
%A Alexandr A. Vasin
%A Anastasiya G. Divtsova
%T Game-teoretic model of agreement on limitation of transboundary atmospheric pollution
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2017
%P 27-44
%V 9
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2017_9_1_a1/
%G ru
%F MGTA_2017_9_1_a1
Alexandr A. Vasin; Anastasiya G. Divtsova. Game-teoretic model of agreement on limitation of transboundary atmospheric pollution. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 9 (2017) no. 1, pp. 27-44. http://geodesic.mathdoc.fr/item/MGTA_2017_9_1_a1/

[1] Vasin A. A., Krasnoschekov P. S., Morozov V. V., Issledovanie operatsii, «Akademiya», M., 2008

[2] Vasin A. A., Morozov V. V., Vvedenie v teoriyu igr s prilozheniyami k ekonomike, M., 2003

[3] Petrosyan L. A., “Ustoichivost reshenii v differentsialnykh igrakh so mnogimi uchastnikami”, Vestn. LGU. Ser. 1, 1977, no. 4(19), 46–52

[4] Rettieva A. N., “Zadacha upravleniya bioresursami s razlichnymi gorizontami planirovaniya”, MTIiP, 6:3 (2014), 54–75 | Zbl

[5] Chander P., Tulkens H., “The core of an economy with multilateral environmental externalities”, International Journal of Game Theory, 26 (1997), 372–401 | DOI | MR

[6] Halkos G. E., Hutton J. P., Optimal acid rain abatement policy in Europe, MPRA, No 33943, 2011

[7] Kaitala V., Pohjola M., Tahvonen O., “Transboundary air pollution and soil acidification: A dynamic analysis of an acid rain game between Finland and the USSR”, Keskusteluaiheita, Discussion papers, 1990, 161–181

[8] Masoudi N., Santugini M., Zaccour G., A Dynamic Game of Emissions Pollution with Uncertainty and Learning, Centre interuniversitaire sur le risque, les politiques economiques et l'emploi, 2015

[9] Petrosjan L., Zaccour G., “Time-consistent Shapley Value of Pollution Cost Reduction”, Journal of Economic Dynamics and Control, 2003, 381–398 | DOI | MR | Zbl

[10] Petrosian O., “Looking forward approach in cooperative differential games”, IGTR, 18:2 (2016), 1–14 | MR

[11] Ploeg F., Zeeuw A., “International aspects of pollution control”, European Association of Environmental and Resource Economics, 2 (1992), 117–139 | DOI

[12] Selten R., “Reexamination of the perfectness concept for equilibrium points in extensive games”, International Journal of Game Theory, 3 (1975), 141–201 | MR