Game-theoretic modeling of the project management contract
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 8 (2016) no. 4, pp. 43-62.

Voir la notice de l'article provenant de la source Math-Net.Ru

Two-stage game-theoretic models of the project management contract with random duration of works are considered. On the first stage the center signs the contract for work performance in which it determines the size and the mode of payment with each of contractors, and on the second stage suppliers choose their own work rates. The optimum amount of payments and the expected time of implementation of the project are estimated. Numerical modeling of characteristics of the optimum contract for each mode of payments is carried out. The comparative analysis of results of numerical modeling showed that it is favorable to project manager to choose the contract for suppliers with various payments and the mode of payment for completion of work.
Keywords: project, work, project manager (center), supplier, project management contract, payment regime, payment, project completion time, two-stage game, Stackelberg equilibrium.
@article{MGTA_2016_8_4_a3,
     author = {Nikolay A. Zenkevich and Yury S. Sokolov and Maria V. Fattakhova},
     title = {Game-theoretic modeling of the project management contract},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {43--62},
     publisher = {mathdoc},
     volume = {8},
     number = {4},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2016_8_4_a3/}
}
TY  - JOUR
AU  - Nikolay A. Zenkevich
AU  - Yury S. Sokolov
AU  - Maria V. Fattakhova
TI  - Game-theoretic modeling of the project management contract
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2016
SP  - 43
EP  - 62
VL  - 8
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2016_8_4_a3/
LA  - ru
ID  - MGTA_2016_8_4_a3
ER  - 
%0 Journal Article
%A Nikolay A. Zenkevich
%A Yury S. Sokolov
%A Maria V. Fattakhova
%T Game-theoretic modeling of the project management contract
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2016
%P 43-62
%V 8
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2016_8_4_a3/
%G ru
%F MGTA_2016_8_4_a3
Nikolay A. Zenkevich; Yury S. Sokolov; Maria V. Fattakhova. Game-theoretic modeling of the project management contract. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 8 (2016) no. 4, pp. 43-62. http://geodesic.mathdoc.fr/item/MGTA_2016_8_4_a3/

[1] Voropaev V. I., Upravlenie proektami v Rossii, Alans, M., 1995

[2] Lysakov A. V., Novikov D. A., Dogovornye otnosheniya v upravlenii proektami, IPU RAN, M., 2004

[3] Petrosyan L. A., Zenkevich N. A., Shevkoplyas E. V., Teoriya igr, BKhV-Peterburg, SPb., 2012

[4] M. Abramovits, I. Stigan (red.), Spravochnik po spetsialnym funktsiyam, Nauka, M., 1979

[5] Adler P., Mandelbaum A., Nguyen V., Schwerer E., “From project to process management: An empirical-based framework for analyzing product development time”, Management Science, 41:3 (1995), 458–482 | DOI

[6] Cohen I., Mandelbaum A., Shtub A., “Multi-project scheduling and control: A project-based comparative study of the critical chain methodology and some alternatives”, Project Management Journal, 35:2 (2004), 39–50

[7] Kamburowski J., “An upper bound on the expected completion time of PERT networks”, European Journal of Operational Research, 21:2 (1985), 206–212 | DOI | MR | Zbl

[8] Kulkarni V. G., Adlakha V. G., “Markov and Markov-regenerative PERT networks”, Operation Research, 34:5 (1986), 769–781 | DOI | MR | Zbl

[9] Kwon H., Lippman S., McCardle K., Tang C., “Project management contracts with delayed payments”, Manufacturing and Service Operations Management, 12:4 (2010), 692–707 | DOI

[10] Maggott J., Skudlarski K., “Estimating the mean completion time of PERT networks with exponentially distributed durations of activities”, European Journal of Operational Research, 71:8 (1993), 7079

[11] Paul A., Gutierrez G., “Simple probability models for project contract”, European Journal of Operational Research, 165 (2005), 329–338 | DOI | Zbl

[12] Ross S., Introduction to Stochastic Dynamic Programming, Academic Press, 1983 | MR | Zbl