The evolution modeling in the problems of control of stable development of active systems
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 8 (2016) no. 4, pp. 14-29.

Voir la notice de l'article provenant de la source Math-Net.Ru

There is the applying of the evolution modeling for the decision of the problems of the control of the stable development of difficult systems. Different information structures of hierarchical differential games which formalize the problems of control of stable development are described. The result which provides possibility of using the genetic algorithms for the decision of these problems is obtained. The statement is illustrated by a model example.
Keywords: differential games, control of stable development, evolution modeling.
@article{MGTA_2016_8_4_a1,
     author = {Grigory I. Belyavsky and Natalia V. Danilova and Gennadii A. Ougolnitsky},
     title = {The evolution modeling in the problems of control of stable development of active systems},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {14--29},
     publisher = {mathdoc},
     volume = {8},
     number = {4},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2016_8_4_a1/}
}
TY  - JOUR
AU  - Grigory I. Belyavsky
AU  - Natalia V. Danilova
AU  - Gennadii A. Ougolnitsky
TI  - The evolution modeling in the problems of control of stable development of active systems
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2016
SP  - 14
EP  - 29
VL  - 8
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2016_8_4_a1/
LA  - ru
ID  - MGTA_2016_8_4_a1
ER  - 
%0 Journal Article
%A Grigory I. Belyavsky
%A Natalia V. Danilova
%A Gennadii A. Ougolnitsky
%T The evolution modeling in the problems of control of stable development of active systems
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2016
%P 14-29
%V 8
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2016_8_4_a1/
%G ru
%F MGTA_2016_8_4_a1
Grigory I. Belyavsky; Natalia V. Danilova; Gennadii A. Ougolnitsky. The evolution modeling in the problems of control of stable development of active systems. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 8 (2016) no. 4, pp. 14-29. http://geodesic.mathdoc.fr/item/MGTA_2016_8_4_a1/

[1] Belyavskii G. I., Lila V. B., Puchkov E. V., “Algoritm i programmnaya realizatsiya gibridnogo metoda obucheniya iskusstvennykh neironnykh setei”, Programmnye produkty i sistemy, 2012, no. 4, 96–101

[2] Emelyanov V. V., Kureichik V. V., Kureichik V. M., Teoriya i praktika evolyutsionnogo modelirovaniya, M., 2003

[3] Gladkov L. A., Kureichik V. V., Kureichik V. M., Geneticheskie algoritmy, M., 2006

[4] Gorelov M. A., Kononenko A. F., “Dinamicheskie igry. I. Yazyk modelirovaniya”, Avtomatika i telemekhanika, 2014, no. 11, 127–149

[5] Gorelov M. A., Kononenko A. F., “Dinamicheskie igry. II. Ravnovesiya”, Avtomatika i telemekhanika, 2014, no. 12, 56–77

[6] Gorelov M. A., Kononenko A. F., “Dinamicheskie igry. III. Ierarkhicheskie igry”, Avtomatika i telemekhanika, 2015, no. 2, 89–106

[7] Kelton V., Lou A., Imitatsionnoe modelirovanie, SPb., 2004

[8] Kononenko A. F., “O mnogoshagovykh konfliktakh s obmenom informatsiei”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 17:4 (1977), 922–931 | Zbl

[9] Ugolnitskii G. A., Ierarkhicheskoe upravlenie ustoichivym razvitiem, M., 2010

[10] Ugolnitskii G. A., Usov A. B., “Issledovanie differentsialnykh modelei ierarkhicheskikh sistem upravleniya putem ikh diskretizatsii”, Avtomatika i telemekhanika, 2013, no. 2, 109–122

[11] Ugolnitskii G. A., Usov A. B., “Ravnovesiya v modelyakh ierarkhicheski organizovannykh dinamicheskikh sistem s uchetom trebovanii ustoichivogo razvitiya”, Avtomatika i telemekhanika, 2014, no. 6, 86–102

[12] Basar T., Olsder G. J., Dynamic Noncooperative Game Theory, Philadelphia, 1999 | MR

[13] Han Z., Niyato D., Saad W. et al., Game Theory in Wireless and Communication Networks: Theory, Models, and Applications, Cambridge University Press, 2012 | Zbl

[14] Kornienko S. A., Ougolnitsky G. A., “Dynamic Stackelberg Games with Requirements to the Controlled System as a Model of Sustainable Environmental Management”, Advances in Systems Science and Applications, 14:4 (2014), 325–345