Self-covariant and consistent solutions of cooperative games
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 8 (2016) no. 3, pp. 100-132.

Voir la notice de l'article provenant de la source Math-Net.Ru

A weakening of covariance property for solutions of cooperative games with transferable utilities – self-covariance – is defined. Self-covariant solutions are positively homogenous and satisfy a "restricted" translation covariance such that feasible shifts are only the solution vectors themselves and their multipliers. A description of all nonempty, efficient, anonymous, self-covariant, and single-valued solution for the class of two-person TU games is given. Among them the solutions admitting consistent extensions in the Davis–Maschler sense are found. They are the equal share solution, the standard solution, and the constrained egalitarian solution for superadditive two-person games. Characterizations of consistent extensions of these solutions to the class of all TU games are given.
Keywords: cooperative game, covariance, self-covariance, equal share solution, standard solution, constrained egalitarian solution consistent extension.
@article{MGTA_2016_8_3_a4,
     author = {Elena B. Yanovskaya},
     title = {Self-covariant and consistent solutions of cooperative games},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {100--132},
     publisher = {mathdoc},
     volume = {8},
     number = {3},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2016_8_3_a4/}
}
TY  - JOUR
AU  - Elena B. Yanovskaya
TI  - Self-covariant and consistent solutions of cooperative games
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2016
SP  - 100
EP  - 132
VL  - 8
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2016_8_3_a4/
LA  - ru
ID  - MGTA_2016_8_3_a4
ER  - 
%0 Journal Article
%A Elena B. Yanovskaya
%T Self-covariant and consistent solutions of cooperative games
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2016
%P 100-132
%V 8
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2016_8_3_a4/
%G ru
%F MGTA_2016_8_3_a4
Elena B. Yanovskaya. Self-covariant and consistent solutions of cooperative games. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 8 (2016) no. 3, pp. 100-132. http://geodesic.mathdoc.fr/item/MGTA_2016_8_3_a4/

[1] Sobolev A. I., “Kharakterizatsiya printsipov optimalnosti v kooperativnykh igrakh posredstvom funktsionalnykh uravnenii”, Matematicheskie metody v sotsialnykh naukakh, 6, ed. N. N. Vorobev, Institut fiziki i matematiki AN Litovskoi SSR, Vilnyus, 1975, 94–151 | Zbl

[2] Yanovskaya E. B., “Sovmestnaya kharakterizatsiya pred $n$-yadra i resheniya Dutta–Reya dlya vypuklykh igr”, Matematicheskaya teoriya igr i ee prilozheniya, 4:2 (2012), 96–123 | MR | Zbl

[3] Arín J., Iñarra E., “Egalitarian solutions in the core”, International Journal of Game Theory, 30:2 (2001), 187–194 | DOI | MR

[4] Arín J., Iñarra E., “Egalitarian sets for TU-games”, International Game Theory Review, 4:3 (2002), 183–199 | DOI | MR | Zbl

[5] Davis M., Maschler M., “The kernel of a cooperative game”, Naval Res. Logist. Quart., 12 (1965), 223–235 | DOI | MR

[6] Dutta B., Ray D., “A concept of egalitarianism under participation constraints”, Econometrica, 57 (1965), 615–630 | DOI | MR

[7] Dutta B., “The egalitarian solution and the reduced game properties in convex games”, International Journal of Game Theory, 19 (1990), 153–159 | DOI | MR

[8] Hart S., Mas-Colell A., “Potential, value, and consistency”, Econometrica, 57 (1989), 589–614 | DOI | MR | Zbl

[9] Hougaard J. L., Peleg B., Thorlund-Petersen L., “On the set of Lorenz-maximal imputations in the core of a balanced game”, International Journal of Game Theory, 30 (2001), 147–166 | DOI | MR

[10] Orshan G., Sudhölter P., “The positive core of a cooperative game”, International Journal of Game Theory, 39 (2010), 113–136 | DOI | MR | Zbl

[11] Peleg B., “On the Reduced Game Property and its Converse”, International Journal of Game Theory, 15 (1986), 187–200 | DOI | MR | Zbl

[12] Schmeidler D., “The nucleolus of a characteristic function game”, SIAM Journal of Applied Mathematics, 17 (1969), 1163–1170 | DOI | MR | Zbl

[13] Yanovskaya E., “Lexicographical maxmin core solutions for cooperative games”, Constructing Scalar-Valued Objective Functions, Lecture Notes in Economics, 453, eds. Tangian A., Gruber J., Springer-Verlag, 1997, 125–136 | DOI | MR | Zbl