Optimal arrivals to a two-server loss system with a rational random access
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 8 (2016) no. 3, pp. 67-99.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the 2-server queueing loss-type system which admits requests during a time interval $[0,T]$. Players try to send their requests into the system, which randomly redirects each request to one of its free servers with some probabilities, or to unique free server, or refuses the request. We consider a non-cooperative game for this queuing system. Each player's strategy is a time moment to send his request to the system trying to maximize the probability of successful service obtaining. We use a symmetric Nash equilibrium as an optimality criteria. Two models are considered for this game. In the first model the number of players is deterministic. In the second it follows a Poisson distribution. We prove that there exists a unique symmetric equilibrium for both models. We compare numerically equilibria for different model parameters of the model. Also we compare an efficiency for the one-server model and the two-server model with a random access where the system has no information about servers' being busy.
Keywords: queueing system, optimal arrivals, Nash equilibrium.
@article{MGTA_2016_8_3_a3,
     author = {Julia V. Chirkova},
     title = {Optimal arrivals to a two-server loss system with a rational random access},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {67--99},
     publisher = {mathdoc},
     volume = {8},
     number = {3},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2016_8_3_a3/}
}
TY  - JOUR
AU  - Julia V. Chirkova
TI  - Optimal arrivals to a two-server loss system with a rational random access
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2016
SP  - 67
EP  - 99
VL  - 8
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2016_8_3_a3/
LA  - ru
ID  - MGTA_2016_8_3_a3
ER  - 
%0 Journal Article
%A Julia V. Chirkova
%T Optimal arrivals to a two-server loss system with a rational random access
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2016
%P 67-99
%V 8
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2016_8_3_a3/
%G ru
%F MGTA_2016_8_3_a3
Julia V. Chirkova. Optimal arrivals to a two-server loss system with a rational random access. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 8 (2016) no. 3, pp. 67-99. http://geodesic.mathdoc.fr/item/MGTA_2016_8_3_a3/

[1] Mazalov V. V., Chuiko Yu. V., “Nekooperativnoe ravnovesie po Neshu v zadache vybora optimalnogo momenta obrascheniya k sisteme obsluzhivaniya”, Vychislitelnye tekhnologii, 11:6 (2006), 60–71

[2] Chirkova Yu. V., “Optimalnye obrascheniya k 2-servernoi sisteme s poteryami i sluchainym dostupom”, Matematicheskaya Teoriya Igr i ee Prilozheniya, 7:3 (2015), 79–111 | MR

[3] Altman E., “Applications of dynamic games in queues”, Advances in Dynamic Games, 7 (2005), 309–342 | DOI | MR | Zbl

[4] Altman E., A Markov game approach for optimal routing into a queueing network, INRIA report No 2178, 1994

[5] Altman E., Hassin R., “Non-Threshold Equilibrium for Customers Joining an M/G/1 Queue”, Proceedings of 10th International Symposium on Dynamic Game and Applications (2002) | MR

[6] Altman E., Jimenez T., Nunez Queija R., Yechiali U., “Optimal routing among $\cdot/M/1$ queues with partial information”, Stochastic Models, 20:2 (2004), 149–172 | DOI | MR

[7] Altman E., Koole G., “Stochastic scheduling games with Markov decision arrival processes”, Journal Computers and Mathematics with Appl., 26:6 (1993), 141–148 | DOI | MR | Zbl

[8] Altman E., Shimkin N., “Individually Optimal Dynamic Routing in a Processor Sharing System”, Operations Research, 1998, 776–784 | DOI | Zbl

[9] Glazer A., Hassin R., “Equilibrium arrivals in queues with bulk service at scheduled times”, Transportation Science, 21:4 (1987), 273–278 | DOI | MR | Zbl

[10] Glazer A., Hassin R., “$?/M/1$: On the equilibrium distribution of customer arrivals”, European Journal of Operational Research, 13:2 (1983), 146–150 | DOI | MR | Zbl

[11] Johnson O., Goldschmidt C., “Preservation of log-concavity on summation”, ESAIM: Probability and Statistics, 10 (2006), 206–215 | DOI | MR | Zbl

[12] Killelea P., Web Performance Tuning: Speeding Up the Web, O'Reilly Media, Inc., 2002

[13] Kopper K., The Linux Enterprise Cluster: Build a Highly Available Cluster with Commodity Hardware and Free Software, No Starch Press, 2005

[14] Ou Z., Zhuang H., Lukyanenko A., Nurminen J., Hui P., Mazalov V., Yla-Jaaski A., “Is the Same Instance Type Created Equal? Exploiting Heterogeneity of Public Clouds”, IEEE Transactions on Cloud Computing, 1:2 (2013), 201–214 | DOI

[15] Ravner L., Haviv M., “Strategic timing of arrivals to a finite queue multi-server loss system”, Queueing Systems, 81:1 (2015), 71–96 | DOI | MR | Zbl

[16] Ravner L., Haviv M., “Equilibrium and socially optimal arrivals to a single server loss system”, International Conference on NETwork Games COntrol and OPtimization 2014 (NetGCoop'14) (Trento, Italy, October 2014)

[17] Shaked M., Shanthikumar J. G., Stochastic Orders, Springer Series In Statistics, Springer, New York, 2007 | DOI | MR | Zbl