Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MGTA_2016_8_3_a3, author = {Julia V. Chirkova}, title = {Optimal arrivals to a two-server loss system with a rational random access}, journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a}, pages = {67--99}, publisher = {mathdoc}, volume = {8}, number = {3}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MGTA_2016_8_3_a3/} }
TY - JOUR AU - Julia V. Chirkova TI - Optimal arrivals to a two-server loss system with a rational random access JO - Matematičeskaâ teoriâ igr i eë priloženiâ PY - 2016 SP - 67 EP - 99 VL - 8 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MGTA_2016_8_3_a3/ LA - ru ID - MGTA_2016_8_3_a3 ER -
Julia V. Chirkova. Optimal arrivals to a two-server loss system with a rational random access. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 8 (2016) no. 3, pp. 67-99. http://geodesic.mathdoc.fr/item/MGTA_2016_8_3_a3/
[1] Mazalov V. V., Chuiko Yu. V., “Nekooperativnoe ravnovesie po Neshu v zadache vybora optimalnogo momenta obrascheniya k sisteme obsluzhivaniya”, Vychislitelnye tekhnologii, 11:6 (2006), 60–71
[2] Chirkova Yu. V., “Optimalnye obrascheniya k 2-servernoi sisteme s poteryami i sluchainym dostupom”, Matematicheskaya Teoriya Igr i ee Prilozheniya, 7:3 (2015), 79–111 | MR
[3] Altman E., “Applications of dynamic games in queues”, Advances in Dynamic Games, 7 (2005), 309–342 | DOI | MR | Zbl
[4] Altman E., A Markov game approach for optimal routing into a queueing network, INRIA report No 2178, 1994
[5] Altman E., Hassin R., “Non-Threshold Equilibrium for Customers Joining an M/G/1 Queue”, Proceedings of 10th International Symposium on Dynamic Game and Applications (2002) | MR
[6] Altman E., Jimenez T., Nunez Queija R., Yechiali U., “Optimal routing among $\cdot/M/1$ queues with partial information”, Stochastic Models, 20:2 (2004), 149–172 | DOI | MR
[7] Altman E., Koole G., “Stochastic scheduling games with Markov decision arrival processes”, Journal Computers and Mathematics with Appl., 26:6 (1993), 141–148 | DOI | MR | Zbl
[8] Altman E., Shimkin N., “Individually Optimal Dynamic Routing in a Processor Sharing System”, Operations Research, 1998, 776–784 | DOI | Zbl
[9] Glazer A., Hassin R., “Equilibrium arrivals in queues with bulk service at scheduled times”, Transportation Science, 21:4 (1987), 273–278 | DOI | MR | Zbl
[10] Glazer A., Hassin R., “$?/M/1$: On the equilibrium distribution of customer arrivals”, European Journal of Operational Research, 13:2 (1983), 146–150 | DOI | MR | Zbl
[11] Johnson O., Goldschmidt C., “Preservation of log-concavity on summation”, ESAIM: Probability and Statistics, 10 (2006), 206–215 | DOI | MR | Zbl
[12] Killelea P., Web Performance Tuning: Speeding Up the Web, O'Reilly Media, Inc., 2002
[13] Kopper K., The Linux Enterprise Cluster: Build a Highly Available Cluster with Commodity Hardware and Free Software, No Starch Press, 2005
[14] Ou Z., Zhuang H., Lukyanenko A., Nurminen J., Hui P., Mazalov V., Yla-Jaaski A., “Is the Same Instance Type Created Equal? Exploiting Heterogeneity of Public Clouds”, IEEE Transactions on Cloud Computing, 1:2 (2013), 201–214 | DOI
[15] Ravner L., Haviv M., “Strategic timing of arrivals to a finite queue multi-server loss system”, Queueing Systems, 81:1 (2015), 71–96 | DOI | MR | Zbl
[16] Ravner L., Haviv M., “Equilibrium and socially optimal arrivals to a single server loss system”, International Conference on NETwork Games COntrol and OPtimization 2014 (NetGCoop'14) (Trento, Italy, October 2014)
[17] Shaked M., Shanthikumar J. G., Stochastic Orders, Springer Series In Statistics, Springer, New York, 2007 | DOI | MR | Zbl