Predictive trajectories of economic development under structural changes
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 8 (2016) no. 3, pp. 34-66.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to the investigation of one-sector economic growth models and corresponding optimal control problems on distribution of investment flows. The paper deals with two type of production functions: the exponential (Cobb–Douglas) function and the linear function which takes into account possible structural changes in statistical data of main economical factors. Dummy variables allow to determine periods when the original model is applicable, and to evaluate model parameters describing economic situations both before and after structural changes. The paper provides the qualitative analysis of solutions of control problems for each model and make a comparison of optimal model scenarios, including trajectories obtained by continuous sewing of solutions constructed on different time intervals, with real statistical trends. The proposed approach of adaptation of model parameters to new conditions can be treated as the learning ability of the general model. It makes the model more flexible with respect to qualitative changes influencing on predictive trajectories of economic development.
Keywords: econometric data analysis, dummy variables, optimal control, economic growth.
@article{MGTA_2016_8_3_a2,
     author = {Alexandr M. Tarasyev and Anastasiya A. Usova and Yuliya V. Shmotina},
     title = {Predictive trajectories of economic development under structural changes},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {34--66},
     publisher = {mathdoc},
     volume = {8},
     number = {3},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2016_8_3_a2/}
}
TY  - JOUR
AU  - Alexandr M. Tarasyev
AU  - Anastasiya A. Usova
AU  - Yuliya V. Shmotina
TI  - Predictive trajectories of economic development under structural changes
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2016
SP  - 34
EP  - 66
VL  - 8
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2016_8_3_a2/
LA  - ru
ID  - MGTA_2016_8_3_a2
ER  - 
%0 Journal Article
%A Alexandr M. Tarasyev
%A Anastasiya A. Usova
%A Yuliya V. Shmotina
%T Predictive trajectories of economic development under structural changes
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2016
%P 34-66
%V 8
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2016_8_3_a2/
%G ru
%F MGTA_2016_8_3_a2
Alexandr M. Tarasyev; Anastasiya A. Usova; Yuliya V. Shmotina. Predictive trajectories of economic development under structural changes. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 8 (2016) no. 3, pp. 34-66. http://geodesic.mathdoc.fr/item/MGTA_2016_8_3_a2/

[1] Aivazyan S. A., Ivanova S. A., Ekonometrika, Market DS, M., 2010

[2] Zamkov O. O., Tolstopyatenko A. V., Cheremnykh Yu. N., Matematicheskie metody v ekonomike, Delo i servis, M., 2001

[3] Intriligator M., Matematicheskie metody optimizatsii i ekonomicheskaya teoriya, Airis Press, M., 2002

[4] Krasovskii A. A., Tarasev A. M., “Svoistva gamiltonovykh sistem v printsipe maksimuma Pontryagina dlya zadach ekonomicheskogo rosta”, Trudy Matematicheskogo instituta im. V. A. Steklova, 262, 2008, 127–145 | MR | Zbl

[5] Krasovskii A. A., Tarasev A. M., “Postroenie nelineinykh regulyatorov v modelyakh ekonomicheskogo rosta”, Trudy Instituta matematiki i mekhaniki, 15, no. 3, UrO RAN, Ekaterinburg, 2009, 127–138

[6] Krushvits L., Finansirovanie i investitsii, Piter, S.-P., 2006

[7] Magnus Ya. R., Katyshev P. K., Peresetskii A. A., Ekonometrika, Delo, M., 2007

[8] Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V., Mischenko E. F., Matematicheskaya teoriya optimalnykh protsessov, Nauka, M., 1983

[9] Tarasev A. M., Usova A. A., “Postroenie regulyatora dlya gamiltonovoi sistemy dvukhsektornoi modeli ekonomicheskogo rosta”, Trudy matematicheskogo instituta im. V. A. Steklova, 271, 2010, 278–298 | MR | Zbl

[10] Tarasev A. M., Usova A. A., “Stabilizatsiya gamiltonovoi sistemy dlya postroeniya optimalnykh traektorii”, Trudy matematicheskogo instituta im. V. A. Steklova, 277, 2012, 257–274 | MR | Zbl

[11] Federalnaya sluzhba gosudarstvennoi statistiki RF (FSGS RF), http://www.gks.ru/wps/wcm/connect/rosstat_main/rosstat/ru/statistics

[12] Sharp U. F., Aleksander G. Dzh., Beili D. V., Investitsii, Infra-M, M., 2010

[13] Aseev S. M., Kryazhimskiy A. V., The Pontryagin Maximum Principle and Optimal Economic Growth Problems, Proceedings of the Steklov Institute of Mathematics, 257, Pleiades Publishing, 2007 | DOI | MR

[14] Ayres R. U., Warr B., The Economic Growth Engine: How Energy and Work Drive Material Prosperity, Edward Elgar Publishing, Cheltenham, UK, 2009

[15] Crespo Cuaresma J., Palokangas T., Tarasyev A., Dynamic Systems, Economic Growth, and the Environment, Springer, Heidelberg–New York–Dordrecht–London, 2010 | Zbl

[16] Crespo Cuaresma J., Palokangas T., Tarasyev A., Green Growth and Sustainable Development, Springer, Heidelberg–New York–Dordrecht–London, 2013 | MR | Zbl

[17] Krasovskii A., Kryazhimskiy A., Tarasyev A., “Optimal Control Design in Models of Economic Growth”, Evolutionary Methods for Design, Optimization and Control, CIMNE (Barcelona, Spain, 2008), eds. P. Neittaanmeki, J. Poriaux T. Tuovinen, 70–75 | Zbl

[18] Krasovskii A., Tarasyev A., “Conjugation of Hamiltonian Systems in Optimal Control Problems”, 17th IFAC World Congress (COEX, South Korea, 2008), IFAC Proceedings Volumes, 17, no. 1, 2008, 7784–7789 | DOI | MR

[19] OECD Statistics, , 2012 http://stats.oecd.org

[20] Sanderson W., Tarasyev A., Usova A., “Capital vs Education: Assessment of Economic Growth from Two Perspectives”, 8th IFAC Symposium on Nonlinear Control Systems (University of Bologna, Italy, September 1–3, 2010), IFAC Proceedings Volumes, 43, no. 14, 2010, 1110–1115 | DOI

[21] Solow R. M., Growth Theory: An Exposition, Oxford University Press, NY, 1970

[22] Tarasyev A. M., Usova A. A., “The Value Function as a Solution of Hamiltonian Systems in Linear Optimal Control Problems with Infinite Horizon”, 18th IFAC World Congress (Milano, Italy, August 28–September 2, 2011), IFAC Proceedings Volumes, 18, no. 1, 2011, 13392–13397 | DOI

[23] Tarasyev A. M., Watanabe C., “Optimal Dynamics of Innovation in Models of Economic Growth”, Journal of Optimization Theory and Applications, 108:1 (2001), 175–203 | DOI | MR | Zbl