Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MGTA_2016_8_2_a3, author = {Artem I. Pyanykh}, title = {On a modification of the multistage bidding model with continuous bids and asymmetric information}, journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a}, pages = {91--113}, publisher = {mathdoc}, volume = {8}, number = {2}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MGTA_2016_8_2_a3/} }
TY - JOUR AU - Artem I. Pyanykh TI - On a modification of the multistage bidding model with continuous bids and asymmetric information JO - Matematičeskaâ teoriâ igr i eë priloženiâ PY - 2016 SP - 91 EP - 113 VL - 8 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MGTA_2016_8_2_a3/ LA - ru ID - MGTA_2016_8_2_a3 ER -
%0 Journal Article %A Artem I. Pyanykh %T On a modification of the multistage bidding model with continuous bids and asymmetric information %J Matematičeskaâ teoriâ igr i eë priloženiâ %D 2016 %P 91-113 %V 8 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/MGTA_2016_8_2_a3/ %G ru %F MGTA_2016_8_2_a3
Artem I. Pyanykh. On a modification of the multistage bidding model with continuous bids and asymmetric information. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 8 (2016) no. 2, pp. 91-113. http://geodesic.mathdoc.fr/item/MGTA_2016_8_2_a3/
[1] Kreps V. L., “Povtoryayuschiesya igry, modeliruyuschie birzhevye torgi, i vozvratnye posledovatelnosti”, Izvestiya RAN. Teoriya i sistemy upravleniya, 2009, no. 4, 109–120
[2] Pyanykh A. I., “Ob odnoi modifikatsii modeli birzhevykh torgov s insaiderom”, Matematicheskaya teoriya igr i ee prilozheniya, 6:4 (2014), 68–84 | MR | Zbl
[3] Pyanykh A. I., “Mnogoshagovaya model birzhevykh torgov s asimmetrichnoi informatsiei i elementami peregovorov”, Vestn. Mosk. un-ta. Ser. 15. Vychisl. matem. i kibern., 2016, no. 1, 34–40
[4] Rokafellar R., Vypuklyi analiz, Mir, M., 1973
[5] Sandomirskaya M. S., Domanskii V. K., “Reshenie odnoshagovoi igry birzhevykh torgov s nepolnoi informatsiei”, Matematicheskaya teoriya igr i ee prilozheniya, 4:1 (2012), 32–54 | MR | Zbl
[6] Aumann R. J., Maschler M. B., Repeated Games with Incomplete Information, The MIT Press, Cambridge–London | MR
[7] Chatterjee K., Samuelson W., “Bargaining under Incomplete Information”, Operations Research, 31:5 (1983), 835–851 | DOI | Zbl
[8] De Meyer B., “Price dynamics on a stock market with asymmetric information”, Games and Economic Behavior, 69 (2010), 42–71 | DOI | MR | Zbl
[9] De Meyer B., Saley H., “On the strategic origin of Brownian motion in finance”, International Journal of Game Theory, 31 (2002), 285–319 | DOI | MR | Zbl
[10] Domansky V., “Repeated games with asymmetric information and random price fluctuations at finance markets”, International Journal of Game Theory, 36:2 (2007), 241–257 | DOI | MR | Zbl