On a modification of the multistage bidding model with continuous bids and asymmetric information
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 8 (2016) no. 2, pp. 91-113.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is concerned with a modification of the multistage bidding model with continuous bids. Bidding takes place between two players for one unit of a risky asset. Player 1 knows the real price of the asset while Player 2 only knows probabilities of high and low prices of the asset. At each stage of the bidding players make real valued bids. The higher bid wins, and one unit of the risky asset is transacted to the winning player. The price of the transaction is equal to a convex combination of bids with a coefficient chosen in advance. Optimal strategies and the value of the $n$-stage game are found.
Keywords: multistage bidding, asymmetric information, repeated games with incomplete information.
@article{MGTA_2016_8_2_a3,
     author = {Artem I. Pyanykh},
     title = {On a modification of the multistage bidding model with continuous bids and asymmetric information},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {91--113},
     publisher = {mathdoc},
     volume = {8},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2016_8_2_a3/}
}
TY  - JOUR
AU  - Artem I. Pyanykh
TI  - On a modification of the multistage bidding model with continuous bids and asymmetric information
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2016
SP  - 91
EP  - 113
VL  - 8
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2016_8_2_a3/
LA  - ru
ID  - MGTA_2016_8_2_a3
ER  - 
%0 Journal Article
%A Artem I. Pyanykh
%T On a modification of the multistage bidding model with continuous bids and asymmetric information
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2016
%P 91-113
%V 8
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2016_8_2_a3/
%G ru
%F MGTA_2016_8_2_a3
Artem I. Pyanykh. On a modification of the multistage bidding model with continuous bids and asymmetric information. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 8 (2016) no. 2, pp. 91-113. http://geodesic.mathdoc.fr/item/MGTA_2016_8_2_a3/

[1] Kreps V. L., “Povtoryayuschiesya igry, modeliruyuschie birzhevye torgi, i vozvratnye posledovatelnosti”, Izvestiya RAN. Teoriya i sistemy upravleniya, 2009, no. 4, 109–120

[2] Pyanykh A. I., “Ob odnoi modifikatsii modeli birzhevykh torgov s insaiderom”, Matematicheskaya teoriya igr i ee prilozheniya, 6:4 (2014), 68–84 | MR | Zbl

[3] Pyanykh A. I., “Mnogoshagovaya model birzhevykh torgov s asimmetrichnoi informatsiei i elementami peregovorov”, Vestn. Mosk. un-ta. Ser. 15. Vychisl. matem. i kibern., 2016, no. 1, 34–40

[4] Rokafellar R., Vypuklyi analiz, Mir, M., 1973

[5] Sandomirskaya M. S., Domanskii V. K., “Reshenie odnoshagovoi igry birzhevykh torgov s nepolnoi informatsiei”, Matematicheskaya teoriya igr i ee prilozheniya, 4:1 (2012), 32–54 | MR | Zbl

[6] Aumann R. J., Maschler M. B., Repeated Games with Incomplete Information, The MIT Press, Cambridge–London | MR

[7] Chatterjee K., Samuelson W., “Bargaining under Incomplete Information”, Operations Research, 31:5 (1983), 835–851 | DOI | Zbl

[8] De Meyer B., “Price dynamics on a stock market with asymmetric information”, Games and Economic Behavior, 69 (2010), 42–71 | DOI | MR | Zbl

[9] De Meyer B., Saley H., “On the strategic origin of Brownian motion in finance”, International Journal of Game Theory, 31 (2002), 285–319 | DOI | MR | Zbl

[10] Domansky V., “Repeated games with asymmetric information and random price fluctuations at finance markets”, International Journal of Game Theory, 36:2 (2007), 241–257 | DOI | MR | Zbl