Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MGTA_2016_8_2_a2, author = {Nikolay A. Krasovskii and Alexander M. Tarasyev}, title = {Equilibrium trajectories in dynamical bimatrix games with average integral payoff functionals}, journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a}, pages = {58--90}, publisher = {mathdoc}, volume = {8}, number = {2}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MGTA_2016_8_2_a2/} }
TY - JOUR AU - Nikolay A. Krasovskii AU - Alexander M. Tarasyev TI - Equilibrium trajectories in dynamical bimatrix games with average integral payoff functionals JO - Matematičeskaâ teoriâ igr i eë priloženiâ PY - 2016 SP - 58 EP - 90 VL - 8 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MGTA_2016_8_2_a2/ LA - ru ID - MGTA_2016_8_2_a2 ER -
%0 Journal Article %A Nikolay A. Krasovskii %A Alexander M. Tarasyev %T Equilibrium trajectories in dynamical bimatrix games with average integral payoff functionals %J Matematičeskaâ teoriâ igr i eë priloženiâ %D 2016 %P 58-90 %V 8 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/MGTA_2016_8_2_a2/ %G ru %F MGTA_2016_8_2_a2
Nikolay A. Krasovskii; Alexander M. Tarasyev. Equilibrium trajectories in dynamical bimatrix games with average integral payoff functionals. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 8 (2016) no. 2, pp. 58-90. http://geodesic.mathdoc.fr/item/MGTA_2016_8_2_a2/
[1] Arnold V. I., “Optimizatsiya v srednem i fazovye perekhody v upravlyaemykh dinamicheskikh sistemakh”, Funktsionalnyi analiz i ego prilozheniya, 36:2 (2002), 1–11 | DOI | MR
[2] Vorobev N. N., Teoriya igr dlya ekonomistov-kibernetikov, Nauka, M., 1985 | MR
[3] Davydov A. A., Mena Matosh E., “Tipichnye fazovye perekhody i osobennosti vygody v modeli Arnolda”, Matematicheskii sbornik, 198:1 (2007), 21–42 | DOI | MR | Zbl
[4] Kleimenov A. F., Neantagonisticheskie pozitsionnye differentsialnye igry, Nauka, Ekaterinburg, 1993
[5] Kolmogorov A. N., “Ob analiticheskikh metodakh v teorii veroyatnostei”, Uspekhi matematicheskikh nauk, 5 (1938), 5–41
[6] Krasovskii N. A., Kryazhimskii A. V., Tarasev A. M., “Uravneniya Gamiltona–Yakobi v evolyutsionnykh igrakh”, Trudy Instituta matematiki i mekhaniki UrO RAN, 20, no. 3, 2014, 114–131 | MR | Zbl
[7] Krasovskii N. A., Tarasev A. M., “Poisk tochek maksimuma vektornogo kriteriya s dekompozitsionnymi svoistvami”, Trudy Instituta matematiki i mekhaniki UrO RAN, 15, no. 4, 2009, 167–182
[8] Krasovskii N. A., Tarasev A. M., “Dekompozitsionnyi algoritm poiska ravnovesiya v dinamicheskoi igre”, Matematicheskaya teoriya igr i ee prilozheniya, 3:4 (2011), 49–88
[9] Krasovskii N. A., Tarasev A. M., Ravnovesnye resheniya v dinamicheskikh igrakh, UrGAU, Ekaterinburg, 2015
[10] Krasovskii N. N., Subbotin A. I., Pozitsionnye differentsialnye igry, Nauka, M., 1974 | MR
[11] Kryazhimskii A. V., Osipov Yu. S., “O differentsialno-evolyutsionnykh igrakh”, Trudy matematicheskogo instituta im. V. A. Steklova RAN, 211, 1995, 257–287 | MR | Zbl
[12] Kurzhanskii A. B., Upravlenie i nablyudenie v usloviyakh neopredelennosti, Nauka, M., 1977 | MR
[13] Mazalov V. V., Rettieva A. N., “Asimmetriya v kooperativnoi zadache upravleniya bioresursami”, Upravlenie bolshimi sistemami, 55 (2015), 280–325
[14] Mazalov V. V., Tokareva Yu. S., “Ravnovesie v zadache o sdelkakh s neravnomernym raspredeleniem rezervnykh tsen”, Matematicheskaya teoriya igr i ee prilozheniya, 3:2 (2011), 37–49 | MR
[15] Petrosyan L. A., Zakharov V. V., Matematicheskie modeli v ekologii, SPbGU, SPb., 1997
[16] Petrosyan L. A., Zenkevich N. A., “Printsipy ustoichivoi kooperatsii”, Matematicheskaya teoriya igr i ee prilozheniya, 1:1 (2009), 106–123
[17] Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V., Mischenko E. F., Matematicheskaya teoriya optimalnykh protsessov, Nauka, M., 1969
[18] Subbotin A. I., Minimaksnye neravenstva i uravneniya Gamiltona–Yakobi, Nauka, M., 1991 | MR
[19] Subbotin A. I., Tarasev A. M., “Sopryazhennye proizvodnye funktsii tseny differentsialnoi igry”, Doklady AN SSSR, 283:3 (1985), 559–564 | MR | Zbl
[20] Subbotina N. N., “Metod kharakteristik Koshi i obobschennye resheniya uravnenii Gamiltona–Yakobi–Bellmana”, Doklady AN SSSR, 320:3 (1991), 556–561 | Zbl
[21] Ushakov V. N., “K zadache postroeniya stabilnykh mostov v differentsialnoi igre sblizheniya–ukloneniya”, Izvestiya AN SSSR. Tekhnicheskaya kibernetika, 1980, no. 4, 29–36 | MR
[22] Ushakov V. N., Uspenskii A. A., Lebedev P. D., “Metody negladkogo analiza pri postroenii approksimatsii reshenii differentsialnykh igr i zadach upravleniya”, Vestnik SPbGU. Seriya «Matematika, mekhanika, astronomiya». Ser. 10, 2013, no. 3, 157–167 | MR
[23] Aubin J.-P., “A Survey of Viability Theory”, SIAM Journal on Control and Optimization, 28:4 (1990), 749–788 | DOI | MR | Zbl
[24] Basar T., Olsder G. J., Dynamic Noncooperative Game Theory, Academic Press, London, 1982 | MR | Zbl
[25] Crandall M. G., Lions P.-L., “Viscosity Solutions of Hamilton–Jacobi Equations”, Transactions of the American Mathematical Society, 277:1 (1983), 1–42 | DOI | MR | Zbl
[26] Friedman D., “Evolutionary Games in Economics”, Econometrica, 59:3 (1991), 637–666 | DOI | MR | Zbl
[27] Hofbauer J., Sigmund K., The Theory of Evolution and Dynamical Systems, Cambridge University Press, Cambridge, 1988 | MR | Zbl
[28] Intriligator M., Mathematical Optimization and Economic Theory, Prentice-Hall, New York, 1971 | MR
[29] Krasovskii A. N., Krasovskii N. N., Control Under Lack of Information, Birkhauser, Boston, 1995 | MR
[30] Tarasyev A. M., A Differential Model for a $2 \times 2$ Evolutionary Game Dynamics, IIASA Working Paper, WP-94–63, Laxenburg, Austria, 1994
[31] CNN Money, http://money.cnn.com/
[32] Grafiki dokhodnosti obligatsii, Rynok Foreks, http://www.fxstreet.ru.com/charts/bond-yield/