Static models of concordance of private and public interests in resource allocation
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 8 (2016) no. 2, pp. 28-57.

Voir la notice de l'article provenant de la source Math-Net.Ru

Conditions of system compatibility in the models of resource allocation between private and public activity are analyzed. Economic and administrative control mechanisms of the system compatibility are described.
Keywords: control mechanisms, hierarchical games, resource allocation, system compatibility.
@article{MGTA_2016_8_2_a1,
     author = {Olga I. Gorbaneva and Guennady A. Ougolnitsky},
     title = {Static models of concordance of private and public interests in resource allocation},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {28--57},
     publisher = {mathdoc},
     volume = {8},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2016_8_2_a1/}
}
TY  - JOUR
AU  - Olga I. Gorbaneva
AU  - Guennady A. Ougolnitsky
TI  - Static models of concordance of private and public interests in resource allocation
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2016
SP  - 28
EP  - 57
VL  - 8
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2016_8_2_a1/
LA  - ru
ID  - MGTA_2016_8_2_a1
ER  - 
%0 Journal Article
%A Olga I. Gorbaneva
%A Guennady A. Ougolnitsky
%T Static models of concordance of private and public interests in resource allocation
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2016
%P 28-57
%V 8
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2016_8_2_a1/
%G ru
%F MGTA_2016_8_2_a1
Olga I. Gorbaneva; Guennady A. Ougolnitsky. Static models of concordance of private and public interests in resource allocation. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 8 (2016) no. 2, pp. 28-57. http://geodesic.mathdoc.fr/item/MGTA_2016_8_2_a1/

[1] N. Nisan, T. Roughgarden, E. Tardos, V. Vazirani (eds.), Algorithmic Game Theory, Cambridge University Press, 2007 | MR | Zbl

[2] Burkov V. N., Opoitsev V. I., “Metagame approach to the control in hierarchical systems”, Automation and Remote Control, 35:1 (1974), 93–103 | MR | Zbl

[3] Germeier Yu. B., Vatel I. A., “Equilibrium situations in games with a hierarchical structure of the vector of criteria”, Lecture Notes in Computer Science, 27, 1975, 460–465 | DOI | Zbl

[4] Gorbaneva O. I., Ougolnitsky G. A., “Purpose and Non-Purpose Resource Use Models in Two-Level Control Systems”, Advances in Systems Science and Applications, 13:4 (2013), 378–390

[5] Gorbaneva O. I., Ougolnitsky G. A., “System Compatibility, Price of Anarchy and Control Mechanisms in the Models of Concordance of Private and Public Interests”, Advances in Systems Science and Applications, 15:1 (2015), 45–59 | MR

[6] Kononenko A. F., “Game-theory analysis of a two-level hierarchical control system”, USSR Computational Mathematics and Mathematical Physics, 14:5 (1974), 72–81 | DOI | MR

[7] Kukushkin N. S., “A Condition for Existence of Nash Equilibrium in Games with Public and Private Objectives”, Games and Economic Behavior, 7:2 (1994), 177–192 | DOI | MR | Zbl

[8] Laffont J.-J., Martimort D., The Theory of Incentives: The Principal-Agent Model, Princeton University Press, 2002

[9] D. Novikov (ed.), Mechanism Design and Management: Mathematical Methods for Smart Organizations, Nova Science Publishers, N.Y., 2013

[10] Novikov D., Theory of Control in Organizations, Nova Science Publishers, N.Y., 2013

[11] Ougolnitsky G., Sustainable Management, Nova Science Publishers, N.Y., 2011

[12] Ye D., Chen J., “Non-cooperative games on multidimensional resource allocation”, Future Generation Computer Systems, 29:6 (2013), 1345–1352 | DOI