Equilibrium in a network game with production and knowledge externalities
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 8 (2016) no. 1, pp. 106-137.

Voir la notice de l'article provenant de la source Math-Net.Ru

In each node of network, economy is described by the simple two-period Romer's model of endogenous growth with production and knowledge externalities. The sum of knowledge levels in the neighbor nodes causes an externality in the production of each node of network. The game equilibrium in the network is investigated. The agents' solutions in dependence on the size of externality are obtained. The uniqueness of inner equilibrium is proved. The role of passive agents in network formation is studied; in particular, the possibilities of adding of a passive agent to a regular network, and also of joining of regular networks through nodes with passive agents. It is shown, that the sum of knowledge levels in all the nodes decreases under adding of a new link.
Keywords: network, network structure, network game, Nash equilibrium, externality.
@article{MGTA_2016_8_1_a5,
     author = {Vladimir D. Matveenko and Alexei V. Korolev},
     title = {Equilibrium in a network game with production and knowledge externalities},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {106--137},
     publisher = {mathdoc},
     volume = {8},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2016_8_1_a5/}
}
TY  - JOUR
AU  - Vladimir D. Matveenko
AU  - Alexei V. Korolev
TI  - Equilibrium in a network game with production and knowledge externalities
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2016
SP  - 106
EP  - 137
VL  - 8
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2016_8_1_a5/
LA  - ru
ID  - MGTA_2016_8_1_a5
ER  - 
%0 Journal Article
%A Vladimir D. Matveenko
%A Alexei V. Korolev
%T Equilibrium in a network game with production and knowledge externalities
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2016
%P 106-137
%V 8
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2016_8_1_a5/
%G ru
%F MGTA_2016_8_1_a5
Vladimir D. Matveenko; Alexei V. Korolev. Equilibrium in a network game with production and knowledge externalities. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 8 (2016) no. 1, pp. 106-137. http://geodesic.mathdoc.fr/item/MGTA_2016_8_1_a5/

[1] Matveenko V. D., Korolev A. V., “Tipologiya setei i rol novykh svyazei v setevoi igre s proizvodstvom i eksternaliyami znanii”, Matematicheskaya teoriya igr i prilozheniya, 2016

[2] Matveenko V. D., Korolev A. V., Skoblova Yu. A., Analiz ravnovesii na tsepyakh v setevoi igre s proizvodstvennymi eksternaliyami, Gosudarstvo i biznes. Sovremennye problemy ekonomiki, SZIU RANKhIGS, SPb., 2016

[3] Novikov D. A., “Igry i seti”, Matematicheskaya teoriya igr i ee prilozheniya, 2:1 (2010), 107–124 | MR

[4] Alvarez F., Lucas R. Jr., “General equilibrium analysis of the Eaton–Kortum model of international trade”, Journal of Monetary Economics, 54:6 (2007), 1726–1768 | DOI

[5] Azariadis C., Chen B.-L., Lu C.-H., Wang Y.-C., “A two-sector model of endogenous growth with leisure externalities”, Journal of Economic Theory, 148 (2013), 843–857 | DOI | MR | Zbl

[6] Bramoullé Y., Kranton R., “Public goods in networks”, Journal of Economic Theory, 135 (2007), 478–494 | DOI | MR | Zbl

[7] Bulow J., Geanakoplos J., Klemperer P., “Multimarket oligopoly: strategic substitutes and complements”, Journal of Political Economy, 93:3 (1985), 488–511 | DOI

[8] Chugh S. K., Modern macroeconomics, MIT Press, Cambridge, 2015

[9] Eaton J., Kortum S., “Technology, geography, and trade”, Econometrica, 70:5 (2002), 1741–1779 | DOI | MR | Zbl

[10] Galeotti A., Goyal S., Jackson M. O., Vega–Redondo F., Yariv L., “Network games”, Review of Economic Studies, 77 (2010), 218–244 | DOI | MR | Zbl

[11] Grossman G., Maggi G., “Diversity and trade”, American Economic Review, 90 (2000), 1255–1275 | DOI

[12] Jackson M. O., Social and economic networks, Princeton University Press, Princeton, 2008 | MR | Zbl

[13] Jackson M. O., Zenou Y., “Games on networks”, Handbook of game theory with economic applications, v. 4, eds. Young P., Zamir S., Elsevier Science, Amsterdam, 2015, 95–164 | DOI

[14] Jacobs J., The economy of cities, Random House, New York, 1969

[15] Lucas R. E., “Promoting Economic Literacy: Panel Discussion”, American Economic Review, 92:2 (2002), 473–75 | DOI

[16] Lucas R. E., “On the mechanics of economic development”, Journal of Monetary Economics, 22 (1988), 3–42 | DOI

[17] Martemyanov Y. P., Matveenko V. D., “On the dependence of the growth rate on the elasticity of substitution in a network”, International Journal of Process Management and Benchmarking, 4:4 (2014), 475–492 | DOI

[18] Milgrom P., Roberts J., “The economics of modern manufactoring: technology, strategy, and organisation”, American Economic Review, 80 (1990), 511–518

[19] Milgrom P., Roberts J., “Complementarities and systems: understanding japanese economic organisation”, Estudios Economicos, 9 (1994), 3–42 | MR

[20] Romer P. M., “Increasing returns and long-run growth”, The Journal of Political Economy, 94 (1986), 1002–1037 | DOI

[21] Topkis D. M., Supermodularity and complementarity, Princeton University Press, Princeton, 1998 | MR