Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MGTA_2016_8_1_a4, author = {Alexey B. Iskakov and Mikhail B. Iskakov}, title = {Chain equilibria in secure strategies}, journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a}, pages = {80--105}, publisher = {mathdoc}, volume = {8}, number = {1}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MGTA_2016_8_1_a4/} }
Alexey B. Iskakov; Mikhail B. Iskakov. Chain equilibria in secure strategies. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 8 (2016) no. 1, pp. 80-105. http://geodesic.mathdoc.fr/item/MGTA_2016_8_1_a4/
[1] Aleskerov F. T., “Teoretiko-igrovoe modelirovanie: popytka kratkogo obsuzhdeniya i prognoza razvitiya”, Zhurnal Novoi ekonomicheskoi assotsiatsii, 17:1 (2013), 181–184
[2] Iskakov M. B., “Ravnovesie v bezopasnykh strategiyakh”, Avtomatika i telemekhanika, 2005, no. 3, 139–153
[3] Iskakov M. B., Iskakov A. B., “Ravnovesie, sderzhivaemoe kontrugrozami, i slozhnoe ravnovesie v bezopasnykh strategiyakh”, Upravlenie bolshimi sistemami, 51, 2014, 130–157
[4] Iskakov A. B., Iskakov M. B., “Ravnovesiya v bezopasnykh strategiyakh v tsenovoi duopolii Bertrana–Edzhvorta”, Matematicheskaya teoriya igr i ee prilozheniya, 6:2 (2014), 42–59
[5] d'Aspremont C., Gerard-Varet L.-A., “Stackelberg-Solvable Games and Pre-Play Communication”, Journal of Economic Theory, 23:2 (1980), 201–217 | DOI | MR | Zbl
[6] Baye M. R., Kovenock D., de Vries C. G., The solution of the Tullock rent-seeking game when $R > 2$: mixed-strategy equilibria and mean dissipation rates, Discussion Paper 1993-68, Tilburg University, Center for Economic Research, 1993
[7] Borel E., “The Theory of Play and Integral Equations with Skew Symmetric Kernels”, Econometrica, 21:1 (1953), 97–100 | DOI | MR | Zbl
[8] Dasgupta P., Maskin E., “The existence of equilibrium in discontinuous economic games. II: Applications”, Review Economic Studies, LIII (1986), 27–41 | DOI | MR | Zbl
[9] Eaton C., Lipsey R., “The Principle of Minimum Differentiation Reconsidered: Some New Developments in the Theory of Spatial Competition”, Review of Economic Studies, 42 (1975), 27–50 | DOI
[10] Iskakov M., Iskakov A., Zakharov A., Equilibria in secure strategies in the Tullock contest, CORE Discussion Paper 2014/10, Universite Catholique de Louvain, Center for Operations Research and Econometrics, Louvain, 2014
[11] Iskakov M., Iskakov A., Equilibrium in secure strategies, CORE Discussion Paper 2012/61, Universite Catholique de Louvain, Center for Operations Research and Econometrics, Louvain, 2012
[12] Iskakov M., Iskakov A., “Solution of the Hotelling's game in secure strategies”, Economics Letters, 117 (2012), 115–118 | DOI | MR | Zbl
[13] Iskakov M., Iskakov A., Asymmetric equilibria in secure strategies, Working Paper WP7/2015/03, National Research University Higher School of Economics, Higher School of Economics Publ. House, M., 2015
[14] Kats A., Thisse J.-F., “Unilaterally competitive games”, International Journal of Game Theory, 21 (1992), 291–299 | DOI | MR | Zbl
[15] Osborne M. J., Pitchik C., “Equilibrium in Hotelling's model of spatial competition”, Econometrica, 55:4 (1987), 911–922 | DOI | MR | Zbl
[16] Owen G., Game Theory, Academic Press, New York, 1968 | MR
[17] Rothschild M., Stiglitz J. E., “Equilibrium in competitive insurance markets: an essay on the economics of imperfect information”, Quarterly Journal of Economics, 90 (1976), 629–649 | DOI
[18] Shaked A., “Non-Existence of Equilibrium for the 2-Dimensional 3-Firms Location Problem”, Review of Economic Studies, 42 (1975), 51–56 | DOI | Zbl
[19] Stackelberg H., Marktform und Gleichgewicht, Springer, Wien–Berlin, 1934
[20] Wilson C., “A model of insurance markets with incomplete information”, Journal of Economic Theory, 16 (1977), 167–207 | DOI | MR | Zbl